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Data	analysis	is	condi#onal/adap#ve	

•  “All	inferences	are	
condi#onal	inferences.”	
–  Jonathan	Taylor	(via	Ryan)	

•  “Why	most	published	
research	findings	are	false?”	
–  John	Ioannidis,	2005	

•  “A	garden	of	forking	paths”	
–  Gelman	and	Loken,	2013	
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A	model	for	adap#ve	data	analysis	

Data	

I	have	the	distribu#on.	
I	choose	ques#ons	T.	

I	have	the	data.	
I	choose	how	to	answer	the	ques#ons.	
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Russo	and	Zou.	"Controlling	Bias	in	Adap#ve	Data	Analysis	Using	Informa#on	Theory."	
AISTATS-2016.	

Player	 Adversary	

�T ⇠ N(µT ,⌃)



Example:	Choosing	classifiers		
•  Adversary:	
–  T1:	Give	me	a	risk	es#mate	to	the	op#mal	linear	classifier	
using	feature	1,5,7	

–  T2:	If	the	answer	is	greater	than	0.5:		give	me	that	of	
feature	2,4,6.	Otherwise,	give	me	the	risk	of	a	kernel	
classifier	using	only	feature	1,5,7.	

•  Player:	
–  												empirical	es#mates	of	Ti	on	data.		

	Jointly	distributed	due	to	data	and	Ti		
	(and	Ti	depends	on	T1:i-1,	A1:i-1)	
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Our	contribu#on	
•  Formulate	the	minimax	problem	

•  Establish	informa#on-theore#c	limits	
– Minimax	lower	bound	
– Per-instance	lower	bound	(for	natural	es#mators)	
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Minimax	setup	

•  Assuming:	
•  No	restric#ons	on	adversary.	

•  How	to	answer	all	ques#ons	accurately?	
–  i.e.,	how	to	minimize	
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�T ⇠ N(µT ,⌃)

R(A1:k) = sup

T1:k


max

i2[k]
E(Ai � µTi)

2

�

⌃tt  �2



Known	es#mators	

•  Naïve	es#mator:	
– Achieves	rate:		

	
•  Noise	adding:		
– Achieves	rate:	

•  Can	this	be	improved	further?	

Ai = �Ti

Ai ⇠ N (�Ti ,
p
k�2)

⇥(
p
k�2)

⇥(k�2)

(Russo	and	Zou,	2016)	
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Lower	bound	1	(worst	case)	

•  Assume	

	
•  Any	es#mators 	 		with	input	
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INTRODUCTION
⇧ Motivation

• Scientific discovery / Drug testing

• Hyperparameter tuning

• Interactive model selection

• Exploratory data analysis

• Public benchmark datasets

⇧ A model for adaptive data analysis (Russo and Zou, 2015)

Data	

I have the distribution. 
I choose questions T. 

I have the data but not the distribution. 
I choose how to answer the questions. 

…
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Player Adversary 

�T ⇠ N(µT , ⌃)

⇧ Questions of interest

1. Understanding the game
• How well does naive method work?
• What exactly does noise-adding prevent?

2. Information-theoretic limit
• How well can any estimator do against an adversarial selector?
• Instance-specific lower bound?

PROBLEM SETUP AND EXAMPLES
Data X Drawn from a distribution D (not necessary iid) before the game starts.

Pool of questions T e.g., the class of all linear projections, performance of all neu-
ral networks with depth smaller than 50.

Statistics �t evaluates t on data for t 2 T .

Estimator Ai, chosen in Round i as an arbitrary function from �T , T1:i, A1:i�1, for
estimating µTi = E�Ti .

Selector Ti a randomized function of A1:i�1, T1:i�1 and D, T .

⇧ Example: Unit projection of multivariate Gaussian.

• X ⇠ N (µ, �2Id)

• T =

�
t 2 Rd

: ktk2  1

 
is the class

of all unit vectors

• �t(X) = ht, Xi.

• For any t 2 T , Var(�t(X))  �2

n .

⇧ Example: Bayesian optimization for hyperparameter tuning.

• X validation set.

• T = [0, 1]

d, d-dimensional
hyperparameter.

• �t(X): Validation error of
the fitted model with hy-
perparameter t.

• �T is assumed to be a Gaus-
sian process.

CHARACTERIZING THE MINIMAX RATES

⇧ Gaussian noise adding: Ai = �Ti + N (0,
p

k�2
)

sup

T1:k

E(A1 � µT1)
2 _ ... _ E(Ak � µTk)

2  2(

p
k � 1 + 1)�2 (Russo & Zou, 2015)

• Naive estimator Ai = �Ti has error ⇥(k�2
).

• The adversary does not know �Ti , but it can update its belief about �Ti :

E
�
�T1:k�1 |A1:k

�
= µT1:k�1 + ⌃(⌃ +

p
kI)

�1
(A1:k � µT1:k).

⇧ Minimax lower bound:

Theorem 1 (Unknown distribution) Assume |T | > k � 1 + 2

k�1
and D can induce

distribution �T ⇠ N (µ, ⌃) for any µ, ⌃ satisfying ⌃i,i  �2
. Then

inf

A1:k

sup

D(�T )
sup

T1:k

⇣
max

i
E[(Ai � µTi)

2
]

⌘
= ⌦(

p
k�2

)

⇧ Per-distribution Lower bound:

Theorem 2 (Fixed distribution) For any fixed pair of (D, T ) that obeys the same joint

Gaussian assumption, and in addition are sufficiently rich. Then

inf

Natural A1:k

sup

T1:k

E(A1 � µT1)
2 _ ... _ E(Ak � µTk)

2
= ⌦(

p
k�2

).

“Natural estimators”: Required to rule out triviality.

Ai = f(�Ti , �T1:i�1 , µT1:i�1 , A1:i�1, T1:i�1).

• Note that it can only depend on Ti through �Ti !

Richness assumption: Required to construct a strong adversary.

• D has a lot of independent randomness (dimension d > k). T is flexible.

• For the Gaussian projection example: It suffices that for M = ⌦(

p
k�)8

><

>:

X1, X3, X5, ..., X2k�1 ⇠ N (�M, �2
)

X2, X4, X6, ..., X2k ⇠ N (M, �2
)

Cov(X1, X2) = ... = Cov(X2k�1, X2k) = ⌦(�2
)

SIGN INFERENCE ATTACK AND RANDOMIZATION
⇧ Sign Inference Attack

• Choose T1:k�1 such that �T1 ? �T2 ? ... ? �Tk�1 .
• Infer the signs of �Ti � µTi , i.e., output ŝi = 1 if

log

P(A1, ..., Ak�1|�Ti � µTi > 0)

P(A1, ..., Ak�1|�Ti � µTi < 0)

� 0

• Choose Tk such that Cov(�Tk , �Ti) = ⌫ �2
p

k�1
, where ⌫ is a random sign.

• Randomize over µTi so that the estimators cannot cheat.

⇧ Step 1: Reduction to independent noise adding

1. Lower bound the minimax risk by average risk under some prior.

2. Show that Ak = �Tk is the unique Bayes estimator.

3. Show that take Ai = �Ti + Zi for an independent i is nearly optimal.

⇧ Step 2: Optimal obfuscation the signs of a Gaussian R.V.
• A variational convex optimization

problem.

• Optimal solution is roughly a uni-
form distribution.

• Lower bound by constructing feasi-
ble dual solutions.

DISCUSSION AND OPEN PROBLEMS
• In the Gaussian projection example, we require d > k. Is this tight?

– If k � d2, uniform convergence gives O(d�2
) for naive Ai = �Ti .

– If k < d, we know that ⌦(

p
k�2

) cannot be improved.
– What happens when d < k < d2? Is Gaussian noise adding optimal still?

• Can we do better when D is i.i.d, and T are “statistical queries”?

�T , T1:i�1, A1:i�1, Ti

Ai

From	prev	rounds	data	 Index	

|T | = ⌦(2k)
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Lower	bound	2	(per-Instance)	

•  Fix	a	distribu#on	of 	 			that’s	sufficiently	rich	

•  Any	natural	es#mators	   with	input	

�T
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⇧ Sign Inference Attack

• Choose T1:k�1 such that �T1 ? �T2 ? ... ? �Tk�1 .
• Infer the signs of �Ti � µTi , i.e., output ŝi = 1 if

log
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� 0

• Choose Tk such that Cov(�Tk , �Ti) = ⌫ �2
p

k�1
, where ⌫ is a random sign.

• Randomize over µTi so that the estimators cannot cheat.

⇧ Step 1: Reduction to independent noise adding

1. Lower bound the minimax risk by average risk under some prior.

2. Show that Ak = �Tk is the unique Bayes estimator.

3. Show that take Ai = �Ti + Zi for an independent i is nearly optimal.

⇧ Step 2: Optimal obfuscation the signs of a Gaussian R.V.
• A variational convex optimization

problem.

• Optimal solution is roughly a uni-
form distribution.

• Lower bound by constructing feasi-
ble dual solutions.

DISCUSSION AND OPEN PROBLEMS
• In the Gaussian projection example, we require d > k. Is this tight?

– If k � d2, uniform convergence gives O(d�2
) for naive Ai = �Ti .

– If k < d, we know that ⌦(

p
k�2

) cannot be improved.
– What happens when d < k < d2? Is Gaussian noise adding optimal still?

• Can we do better when D is i.i.d, and T are “statistical queries”?

�T1:i�1 , T1:i�1, A1:i�1,�Ti

Shared	history	Only	past	
data	

Required	to	
avoid	triviality.	

Ai

*In	the	previous	version	of	the	paper:	hkps://arxiv.org/abs/1602.04287	
The	es#mators	are	restricted	to	noise	adding	ones.	New	results	will	be	on	arxiv	soon.		9	



Summary	

•  Gaussian	noise	adding	is	op#mal	up	to	
constant	factors.		

•  Selec#on	itself	is	omen	enough	to	impose	non-
trivial	lower	bound,	even	for	a	fixed	
distribu#on.	

10	



For	proof	details	and	open	problems	

•  Talk	to	me	at	the	poster!	
•  Thank	you!	
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Supplementary	slides	
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Related	work	
•  ADA	via	Differen#al	privacy		(DFHPRR15,	BNSSSU15,	etc…)	

–  Similar	seqng.	DP	is		unnecessarily	strong	for	the	purpose.	Need	low-
sensi#vity.	

–  We	work	with	condi#onal	expecta#ons	directly.	

•  Lower	bounds	via	finger	prin#ng	codes	(Hardt,	Ullman,	Steinke,	etc)	
–  A	different	seqng.	Also,	they	have	a	computa#onal	lower	bound.	
–  Subop#mal	rate	(if	we	ignore	differences	in	seqngs).	

•  Post-selec#on	inference	(Taylor,	Tibshirani,	Fithian,	Lee,	etc.)	
–  The	focus	is	to	have	correct	confidence	interval,	despite	selec#on	bias.	
–  Fixed	procedure,	lasso-like.	Not	adap#ve.	
–  We	prevent	finding	significantly	biased	sta#s#cs	in	the	first	place.	
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Sign	inference	akack	

•  Choose		
–  Such	that	

•  Infer	the	signs	of		
–  using	op#mal	classifier…	

•  Construct	
–  Such	that	it’s	correla#on	with		
				are	propor#onal	to	the		inferred	signs.	
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�t1 ? ... ? �tk�1

�t1 � µt1 , ...,�tk�1 � µtk�1

Tk = tk
�t1 , ...,�tk�1

T1 = t1, ..., Tk�1 = tk�1

Lower	bound	idea:	Op;mal	obfusca;on	of	the	signs	.		



Example:	linear	regression	
y = X� +N(0,�2I)

	
	
Hope	to	discover:	
which	gene	is	associated	with	heart	disease?	
	
Amer	looking	at	a	sequence	of	values:	
	
	
	
We	conclude	that	features	indexed	by	 	

	has	the	a	strong	associa#on!	
	

ht1, �̂i, ..., htk, �̂i

�̂ = (XTX)�1XT y

tk
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* It	could	also	be:	choose	a	feature	subset	and	fit	a	linear	regression.	
The	fiked	parameters	will	s#ll	be	jointly	Gaussian.	



Example:	Hyper	parameter	tuning	via	
Bayesian	Op#miza#on	

•  Set	of	d	hyper	parameters	
•  Grid	search	is	too	expensive.	
•  Omen	people	use	sequen#al	adap#ve	tuning.	

T = [0, 1]d

16	



What’s	in	common?	
•  In	linear	regression:	

•  In	Bayesian	op#miza#on:	

•  In	both	cases:	
–  			 			is	a	Gaussian	Process.	
–  	Both	sequen#al,	but	different	selec#on	rules	

�t = ht, �̂i
µt = ht,�i

T =
�
t 2 Rd|ktk2  1

 

�t = TestErr(t)

µt = E[TestErr(t)]
T = [0, 1]d

�T

Selec#on	rule:	exploratory	

Selec#on	rule:	GP-UCB.	
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