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Living in the Big Data world
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Privacy loss
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Privacy loss

• Second Netflix challenge canceled

• AOL search data leak

• Inference presence of individual from minor allele frequencies [Homer et al
’08]
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This talk: privacy-preserving multiple testing

A hypothesis H could be

• Is the SNP associated with diabetes?

• Does the drug affect autism?

Goal

• Preserve privacy

• Control false discovery rate (FDR)

Application

• Genome-wide association studies

• A/B testing
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Outline

1 Warm-ups
FDR and BHq procedure
Differential privacy

2 Introducing PrivateBHq

3 Proof of FDR control
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Two types of errors

Not reject Reject Total

Null is true True negative False positive m0

Null is false False negative True positive m1

Total m
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False discovery rate (FDR)

FDR := E
[

#false discoveries
#discoveries

]

=
200

100 + 200

true model

estimated model

100 200300

• Wish FDR ≤ q (often q = 0.05, 0.1)

• Proposed by Benjamini and Hochberg ’95

• 35,490 citations as of yesterday
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Why FDR?
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FDR addresses reproducibility
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How to control FDR?
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p-values of hypotheses

p-value
The probability of finding the observed, or more extreme, results when the null
hypothesis of a study question is true

• Uniform in [0, 1] (or stochastically larger) under true null

H0: the drug does not lower blood pressure

• If p = 0.5, no evidence

• If p = 0.01, there is evidence
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Benjamini-Hochberg procedure (BHq)

Let p1, p2, . . . , pm be p-values of m hypotheses
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I Sort p(1) ≤ · · · ≤ p(m)

I Draw rank-dependent
threshold qj/m

I Reject hypotheses below
cutoffs

I Under independence
FDR ≤ q
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What is privacy?

• My response had little impact on released results

• Any adversary cannot learn much information about me based on released
results

• Anonymity may not work

• Is the Benjamini-Hochberg procedure (BH) privacy-preserving?
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BHq is sensitive to perturbations
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A concrete foundation of privacy

LetM be a (random) data-releasing mechanism

Differential privacy (Dwork, McSherry, Nissim, Smith ’06)

M is called (ε, δ)-differentially private if for all databases D and D′ differing
with one individual, and all S ⊂ Range(M),

P(M(D) ∈ S) ≤ eε P(M(D′) ∈ S) + δ

• Probability space is over the randomness ofM

• If δ = 0 (pure privacy),

e−ε ≤ P(M(D) ∈ S)

P(M(D′) ∈ S)
≤ eε
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A concrete foundation of privacy

Differential privacy (Dwork, McSherry, Nissim, Smith ’06)

For all neighboring databases D and D′,

P(M(D) ∈ S) ≤ eε P(M(D′) ∈ S) + δ

(H, d) - Differential Privacy  
 

 

Bad Responses:  Z Z Z 

Pr [response] 

M  gives (𝜖, 𝛿)- differential privacy if for all adjacent x and x’,  and 

all C ⊆ 𝑟𝑎𝑛𝑔𝑒(M) : Pr[ M (D)∈C]  ≤ eH Pr[ M (D’) ∈C] + d 
Neutralizes all linkage attacks. 
Composes unconditionally and automatically: (Σi Hi , Σi di )   

ratio bounded 

This talk: 𝛿 negligible Sep 19, 2012 Differential Privacy and Machine Learning 30 
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An addition to a vast literature

• Counts, linear queries, histograms, contingency tables

• Location and spread

• Dimension reduction (PCA, SVD), clustering

• Support vector machine

• Sparse regression, Lasso, logistic regression

• Gradient descent

• Boosting, multiplicative weights

• Combinatorial optimization, mechanism design

• Kalman filtering

• Statistical queries learning model, PAC learning

• FDR control
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Laplace noise

Lap(b) has density exp(−|x|/b)/2b
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Achieving (ε, 0)-differential privacy: a vignette

How many members of the House of Representatives voted for Trump?

• Sensitivity is 1

• Add symmetric noise Lap( 1
ε ) to the counts

How many albums of Taylor Swift are bought in total by people in this room?

• Sensitivity is 5

• Add symmetric noise Lap( 5
ε ) to the counts

20 / 40
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Outline

1 Warm-ups
FDR and BHq procedure
Differential privacy

2 Introducing PrivateBHq

3 Proof of FDR control
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Sensitivity of p-values

• Additive noise can kill signals when p-values are small

• Solution: take logarithm of p-values

Databases D and D′ are adjacent.

Definition
Tuples (p1(D), . . . , pm(D)) and (p1(D′), . . . , pm(D′)) are called
(η, ν)-multiplicatively sensitive if, for all i,

• either pi(D), pi(D
′) < ν, or

• e−ηpi(D) ≤ p′i(D′) ≤ eηpi(D)

• πi = log max{pi(D), ν} has sensitivity η
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Examples of multiplicatively Sensitive p-values

iid ξ1, . . . , ξn, taking 1 with probability of α and 0 otherwise. T is the sum. To test
H0 : α ≤ 1

2 against H1 : α > 1
2 :

p(D) =

n∑
i=T

1

2n

(
n

i

)
.

Assume m = nC . Then we can take ν = m−2 and η = n−
1
2 +o(1)
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Building blocks of PrivateBHq

24 / 40



Private Min

a.k.a. Report Noisy Min

Algorithm 1: Private Min

Input: π1, · · · , πm
1: for i = 1 to m do
2: set π⊗i = πi + gi where gi is i.i.d. Lap(η

√
10k log(1/δ)/ε)

3: end for
4: return (i? = argmin π⊗i , π

? = πi? + g) where g ∼ Lap(η
√

10k log(1/δ)/ε)

• Private Min is (2ε/
√

10k log(1/δ), 0)-differentially privacy

• Less noise [Raskhodnikova and Smith ’16]
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Pre-selection by peeling

Algorithm 2: Peeling

Input: π1, · · · , πm and k
1: for j = 1 to k do
2: run Private Min
3: remove selected πi?
4: end for
5: report k selected pairs (i, π̃i)

Lemma
peeling(k) is (ε, δ)-differentially private

• A simple application of Advanced Composition Theorem [Dwork, Rothblum,
and Vadhan ’10]
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Finally, PrivateBHq

Algorithm 3: PrivateBHq

Input: (η, ν)-sensitive p-values p1, · · · , pm, k ≥ 1 and ε, δ
Output: a set of up to k rejected hypotheses

1: set πi = log(max{pi, ν})
2: apply peeling(k) to π1, . . . , πm
3: apply BHq to y1, . . . , yk with cutoffs αj = log(qj/m+ ν) + η∆, where

∆ = (1 + o(1))
√
k log(1/δ) logm/ε

Theorem (Dwork, S., and Zhang)

The PrivateBHq is (ε, δ)-differentially private
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New techniques required

• Smallest p-values may not be selected

• Difficult to specify the joint distribution of selected p-values

• Destroys crucial properties for proving FDR control
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Compliant procedures

Definition
A procedure is called compliant with {qj}mj=1 if all the R rejected p-values are
below qR

• Self-consistency condition [Blanchard and Roquain ’08]

• Step-up and step-down BHqs are {jq/m}-compliant

• So are the generalized step-up-step-down procedures [Tamhane, Liu, and
Dunnett ’98; Sarkar 02’]

• How about the PrivateBHq?
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PrivateBHq is compliant

Lemma
Given (η, ν)-sensitive p-values with ν = o(1/m), then with probability 1− o(1),
the private FDR-controlling algorithm is compliant with {jq′/m}, where
q′ = (1 + o(1))eη∆ · q

31 / 40



Compliance + IWS = FDR control

Definition
A set of test statistics are called to satisfy the independence within a subset I0

(IWS on I0), if the test statistics from I0 are jointly independent.

Theorem
Suppose the test statistics satisfies IWS on the subset of true null hypotheses.
Then any procedure compliant with the BHq critical values qj/m obeys

FDR ≤ q log(1/q) + Cq

FDR2 ≤ Cq

FDRk ≤
(

1 + 2/
√
qk
)
q.

• FDRk := E
[
V
R ;V ≥ k

]
• C ≈ 2.7

32 / 40



Compliance + IWS = FDR control

Definition
A set of test statistics are called to satisfy the independence within a subset I0

(IWS on I0), if the test statistics from I0 are jointly independent.

Theorem
Suppose the test statistics satisfies IWS on the subset of true null hypotheses.
Then any procedure compliant with the BHq critical values qj/m obeys

FDR ≤ q log(1/q) + Cq

FDR2 ≤ Cq

FDRk ≤
(

1 + 2/
√
qk
)
q.

• FDRk := E
[
V
R ;V ≥ k

]
• C ≈ 2.7

32 / 40



Compliance + IWS = FDR control

Theorem
IWS on the subset of true nulls + compliance with the BHq critical values qj/m
give

FDR ≤ q log(1/q) + Cq

FDR2 ≤ Cq

FDRk ≤
(

1 + 2/
√
qk
)
q.

• Arbitrary correlations between true null and false null test statistics

• Can be even adversarial!

• Explains partially why BHq is so robust

• If V →∞with probability tending to one, then FDR ≤ q + o(1)
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Proof Sketch
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An upper bound on FDP

Let pi1 , . . . , piR be those rejected, among which p0
(1) ≤ · · · ≤ p

0
(V ) are from true

nulls.

Compliance requires

p0
(V ) ≤ max

1≤j≤R
pij ≤ αR = qR/m

Hence
R ≥ dmp0

(V )/qe

⇒ V

max{R, 1}
≤ V

dmp0
(V )/qe

⇒FDP ≤ max
2≤j≤m0

j

dmp0
(j)/qe

+ min

{
1

dmp0
(1)/qe

, 1

}

• m0 is the total number of true nulls
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Bounding the two terms

Lemma

• E max
2≤j≤m0

j

dmp0
(j)/qe

≤ C1q

• Emin

{
1

dmp0
(1)/qe

, 1

}
≤ q log

1

q
+ C2q

for some absolute constants C1 and C2

• Assume m0 = m

• Assume all true null p-values are iid uniform on [0, 1]

• Let U1, U2, . . . , Um be iid and uniform on [0, 1]
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Using Rényi’s representation

Wish to prove

E max
2≤j≤m

j

dmU(j)/qe
≤ C1q

Let ξ1, . . . , ξm+1 be iid exponential random variables

(U(1), U(2), . . . , U(m))
d
=

(
T1

Tm+1
,
T2

Tm+1
, . . . ,

Tm
Tm+1

)

• Tj = ξ1 + · · ·+ ξj

• j

dmU(j)/qe
≤ qj

mU(j)
=

q

m
· jTm+1

Tj
≡ q

m
·Wj

• Wj ≡ jTm+1/Tj
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Wj is a backward submartingale

Wish to prove

E max
2≤j≤m

Wj

m
≤ C1

Submartingale definition

E(Wj |Tj+1, . . . , Tm+1) ≥Wj+1

By martingale theory

E max
2≤j≤m

Wj

m
≤ (1− e−1)−1

[
1 + E

(
W2

m
log

W2

m
;
W2

m
≥ 1

)]
≤ (1− e−1)−1

[
1 + E

(
2

mU(2)
log

2

mU(2)
;

2

mU(2)
≥ 1

)]
≤ C1
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Summary
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Take-home message

• FDR addresses reproducibility

• Differential privacy is a rigorous definition

• Privatize BH by adding noise in peeling

• A bonus: Compliance with IWS gives FDR control

Thank You!
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