Controlling False Discovery Rate Privately

Weijie Su

University of Pennsylvania

NIPS, Barcelona, December 9, 2016

Joint work with Cynthia Dwork and Li Zhang

Living in the Big Data world

Privacy loss

Privacy loss

- Second Netflix challenge canceled
- AOL search data leak
- Inference presence of individual from minor allele frequencies [Homer et al '08]

This talk: privacy-preserving multiple testing

A hypothesis H could be

- Is the SNP associated with diabetes?
- Does the drug affect autism?

This talk: privacy-preserving multiple testing

A hypothesis H could be

- Is the SNP associated with diabetes?
- Does the drug affect autism?

Goal

- Preserve privacy
- Control false discovery rate (FDR)

This talk: privacy-preserving multiple testing

A hypothesis H could be

- Is the SNP associated with diabetes?
- Does the drug affect autism?

Goal

- Preserve privacy
- Control false discovery rate (FDR)

Application

- Genome-wide association studies
- A/B testing

Outline

Warm-ups

- FDR and BHq procedure
- Differential privacy

Introducing PrivateBHq

Proof of FDR control

Two types of errors

	Not reject	Reject	Total
Null is true	True negative	False positive	m_0
Null is false	False negative	True positive	m_1
Total			m

False discovery rate (FDR)

$$\mathsf{FDR} := \mathbb{E}\left[\frac{\#\mathsf{false discoveries}}{\#\mathsf{discoveries}}\right]$$

False discovery rate (FDR)

False discovery rate (FDR)

- Wish FDR $\leq q$ (often q = 0.05, 0.1)
- Proposed by Benjamini and Hochberg '95
- 35,490 citations as of yesterday

Why FDR?

Why FDR?

FDR addresses reproducibility

FDR addresses reproducibility

How to control FDR?

p-value

The probability of finding the observed, or more extreme, results when the null hypothesis of a study question is true

• Uniform in [0,1] (or stochastically larger) under true null

p-value

The probability of finding the observed, or more extreme, results when the null hypothesis of a study question is true

• Uniform in [0,1] (or stochastically larger) under true null

 H_0 : the drug does not lower blood pressure

p-value

The probability of finding the observed, or more extreme, results when the null hypothesis of a study question is true

• Uniform in [0,1] (or stochastically larger) under true null

 H_0 : the drug does not lower blood pressure

• If p = 0.5, no evidence

p-value

The probability of finding the observed, or more extreme, results when the null hypothesis of a study question is true

• Uniform in [0,1] (or stochastically larger) under true null

 H_0 : the drug does not lower blood pressure

- If p = 0.5, no evidence
- If p = 0.01, there is evidence!

p-value

The probability of finding the observed, or more extreme, results when the null hypothesis of a study question is true

• Uniform in [0,1] (or stochastically larger) under true null

 H_0 : the drug does not lower blood pressure

- If p = 0.5, no evidence
- If p = 0.01, there is evidence?

What is privacy?

- My response had little impact on released results
- Any adversary cannot learn much information about me based on released results
- Anonymity may not work
- Is the Benjamini-Hochberg procedure (BH) privacy-preserving?

BHq is sensitive to perturbations

BHq is sensitive to perturbations

Let ${\mathcal M}$ be a (random) data-releasing mechanism

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

 \mathcal{M} is called (ϵ, δ) -differentially private if for all databases D and D' differing with one individual, and all $S \subset \text{Range}(\mathcal{M})$,

 $\mathbb{P}(\mathcal{M}(D) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(D') \in S) + \delta$

Let ${\mathcal M}$ be a (random) data-releasing mechanism

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

 \mathcal{M} is called (ϵ, δ) -differentially private if for all databases D and D' differing with one individual, and all $S \subset \text{Range}(\mathcal{M})$,

 $\mathbb{P}(\mathcal{M}(D) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(D') \in S) + \delta$

• Probability space is over the randomness of ${\cal M}$

Let ${\mathcal M}$ be a (random) data-releasing mechanism

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

 \mathcal{M} is called (ϵ, δ) -differentially private if for all databases D and D' differing with one individual, and all $S \subset \text{Range}(\mathcal{M})$,

 $\mathbb{P}(\mathcal{M}(D) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(D') \in S) + \delta$

- Probability space is over the randomness of ${\cal M}$
- If $\delta = 0$ (pure privacy),

$$e^{-\epsilon} \le \frac{\mathbb{P}(\mathcal{M}(D) \in S)}{\mathbb{P}(\mathcal{M}(D') \in S)} \le e^{\epsilon}$$

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

For all neighboring databases D and D',

 $\mathbb{P}(\mathcal{M}(D) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(D') \in S) + \delta$

An addition to a vast literature

- Counts, linear queries, histograms, contingency tables
- Location and spread
- Dimension reduction (PCA, SVD), clustering
- Support vector machine
- Sparse regression, Lasso, logistic regression
- Gradient descent
- Boosting, multiplicative weights
- Combinatorial optimization, mechanism design
- Kalman filtering
- Statistical queries learning model, PAC learning

An addition to a vast literature

- Counts, linear queries, histograms, contingency tables
- Location and spread
- Dimension reduction (PCA, SVD), clustering
- Support vector machine
- Sparse regression, Lasso, logistic regression
- Gradient descent
- Boosting, multiplicative weights
- Combinatorial optimization, mechanism design
- Kalman filtering
- Statistical queries learning model, PAC learning
- FDR control

Laplace noise

Lap(b) has density exp(-|x|/b)/2b

Achieving $(\epsilon, 0)$ -differential privacy: a vignette

How many members of the House of Representatives voted for Trump?

- Sensitivity is 1
- Add symmetric noise $Lap(\frac{1}{\epsilon})$ to the counts

Achieving $(\epsilon, 0)$ -differential privacy: a vignette

How many members of the House of Representatives voted for Trump?

- Sensitivity is 1
- Add symmetric noise $Lap(\frac{1}{\epsilon})$ to the counts

How many albums of Taylor Swift are bought in total by people in this room?

- Sensitivity is 5
- Add symmetric noise $\operatorname{Lap}(\frac{5}{\epsilon})$ to the counts

Outline

Warm-ups

- FDR and BHq procedure
- Differential privacy

Introducing PrivateBHq

Proof of FDR control

Sensitivity of p-values

- Additive noise can kill signals when *p*-values are small
- Solution: take logarithm of *p*-values

Sensitivity of p-values

- Additive noise can kill signals when *p*-values are small
- Solution: take logarithm of *p*-values

Databases D and D' are adjacent.

Definition

Tuples $(p_1(D), \ldots, p_m(D))$ and $(p_1(D'), \ldots, p_m(D'))$ are called (η, ν) -multiplicatively sensitive if, for all i,

- either $p_i(D), p_i(D') < \nu$, or
- $e^{-\eta}p_i(D) \le p'_i(D') \le e^{\eta}p_i(D)$

• $\pi_i = \log \max\{p_i(D), \nu\}$ has sensitivity η

Examples of multiplicatively Sensitive *p*-values

iid ξ_1, \ldots, ξ_n , taking 1 with probability of α and 0 otherwise. T is the sum. To test $H_0: \alpha \leq \frac{1}{2}$ against $H_1: \alpha > \frac{1}{2}$:

$$p(D) = \sum_{i=T}^{n} \frac{1}{2^n} \binom{n}{i}.$$

Assume $m = n^{C}$. Then we can take $\nu = m^{-2}$ and $\eta = n^{-\frac{1}{2} + o(1)}$

Building blocks of PrivateBHq

Private Min

a.k.a. Report Noisy Min

Algorithm 1: Private Min

Input: π_1, \dots, π_m 1: for i = 1 to m do 2: set $\pi_i^{\otimes} = \pi_i + g_i$ where g_i is i.i.d. $\operatorname{Lap}(\eta \sqrt{10k \log(1/\delta)}/\epsilon)$ 3: end for

4: return $(i^{\star} = \operatorname{argmin} \pi_i^{\otimes}, \pi^{\star} = \pi_{i^{\star}} + g)$ where $g \sim \operatorname{Lap}(\eta \sqrt{10k \log(1/\delta)}/\epsilon)$

- Private Min is $(2\epsilon/\sqrt{10k\log(1/\delta)}, 0)$ -differentially privacy
- Less noise [Raskhodnikova and Smith '16]

Pre-selection by peeling

Algorithm 2: Peeling

- **Input:** π_1, \cdots, π_m and k
 - 1: for j = 1 to k do
 - 2: run Private Min
 - 3: remove selected $\pi_{i^{\star}}$
 - 4: end for
 - 5: report k selected pairs $(i, \tilde{\pi}_i)$

Pre-selection by peeling

Algorithm 2: Peeling

- **Input:** π_1, \cdots, π_m and k
 - 1: for j = 1 to $k \operatorname{do}$
 - 2: run Private Min
 - 3: remove selected $\pi_{i^{\star}}$
 - 4: end for
 - 5: report k selected pairs $(i, \tilde{\pi}_i)$

Lemma

peeling(k) is (ϵ, δ) -differentially private

• A simple application of Advanced Composition Theorem [Dwork, Rothblum, and Vadhan '10]

Finally, PrivateBHq

Algorithm 3: PrivateBHq

Input: (η, ν) -sensitive *p*-values $p_1, \cdots, p_m, k \ge 1$ and ϵ, δ **Output:** a set of up to *k* rejected hypotheses

1: set
$$\pi_i = \log(\max\{p_i, \nu\})$$

2: apply
$$\operatorname{peeling}(k)$$
 to π_1, \ldots, π_m

3: apply BHq to
$$y_1, \ldots, y_k$$
 with cutoffs $\alpha_j = \log(qj/m + \nu) + \eta \Delta$, where

 $\Delta = (1 + o(1))\sqrt{k\log(1/\delta)}\log m/\epsilon$

Finally, PrivateBHq

Algorithm 3: PrivateBHq

Input: (η, ν) -sensitive *p*-values $p_1, \dots, p_m, k \ge 1$ and ϵ, δ **Output:** a set of up to *k* rejected hypotheses 1: set $\pi_i = \log(\max\{p_i, \nu\})$ 2: apply peeling(*k*) to π_1, \dots, π_m 3: apply BHq to y_1, \dots, y_k with cutoffs $\alpha_j = \log(qj/m + \nu) + \eta\Delta$, where $\Delta = (1 + o(1))\sqrt{k \log(1/\delta)} \log m/\epsilon$

Theorem (Dwork, S., and Zhang)

The PrivateBHq is (ϵ, δ) -differentially private

Outline

Warm-ups

- FDR and BHq procedure
- Differential privacy

Introducing PrivateBHq

Proof of FDR control

New techniques required

- Smallest *p*-values may not be selected
- Difficult to specify the joint distribution of selected *p*-values
- Destroys crucial properties for proving FDR control

Compliant procedures

Definition

A procedure is called compliant with $\{q_j\}_{j=1}^m$ if all the R rejected p-values are below q_R

Compliant procedures

Definition

A procedure is called compliant with $\{q_j\}_{j=1}^m$ if all the R rejected p-values are below q_R

- Self-consistency condition [Blanchard and Roquain '08]
- Step-up and step-down BHqs are $\{jq/m\}$ -compliant
- So are the generalized step-up-step-down procedures [Tamhane, Liu, and Dunnett '98; Sarkar O2']
- How about the PrivateBHq?

PrivateBHq is compliant

Lemma

Given (η, ν) -sensitive *p*-values with $\nu = o(1/m)$, then with probability 1 - o(1), the private FDR-controlling algorithm is compliant with $\{jq'/m\}$, where $q' = (1 + o(1))e^{\eta\Delta} \cdot q$

Definition

A set of test statistics are called to satisfy the *independence within a subset* \mathcal{I}_0 (IWS on \mathcal{I}_0), if the test statistics from \mathcal{I}_0 are jointly independent.

Definition

A set of test statistics are called to satisfy the *independence within a subset* \mathcal{I}_0 (IWS on \mathcal{I}_0), if the test statistics from \mathcal{I}_0 are jointly independent.

Theorem

Suppose the test statistics satisfies IWS on the subset of true null hypotheses. Then any procedure compliant with the BHq critical values qj/m obeys

$$\begin{aligned} \mathsf{FDR} &\leq q \log(1/q) + Cq \\ \mathsf{FDR}_2 &\leq Cq \\ \mathsf{FDR}_k &\leq \left(1 + 2/\sqrt{qk}\right)q. \end{aligned}$$

- $\operatorname{FDR}_k := \mathbb{E}\left[\frac{V}{R}; V \ge k\right]$
- $C \approx 2.7$

Theorem

IWS on the subset of true nulls + compliance with the BHq critical values qj/m give

$$\begin{aligned} \mathsf{FDR} &\leq q \log(1/q) + Cq \\ \mathsf{FDR}_2 &\leq Cq \\ \mathsf{FDR}_k &\leq \left(1 + 2/\sqrt{qk}\right)q. \end{aligned}$$

• Arbitrary correlations between true null and false null test statistics

Theorem

IWS on the subset of true nulls + compliance with the BHq critical values qj/m give

$$\begin{split} \mathsf{FDR} &\leq q \log(1/q) + Cq \\ \mathsf{FDR}_2 &\leq Cq \\ \mathsf{FDR}_k &\leq \left(1 + 2/\sqrt{qk}\right)q. \end{split}$$

- Arbitrary correlations between true null and false null test statistics
- Can be even adversarial!

Theorem

IWS on the subset of true nulls + compliance with the BHq critical values q j/m give

$$\begin{aligned} \mathsf{FDR} &\leq q \log(1/q) + Cq \\ \mathsf{FDR}_2 &\leq Cq \\ \mathsf{FDR}_k &\leq \left(1 + 2/\sqrt{qk}\right)q. \end{aligned}$$

- Arbitrary correlations between true null and false null test statistics
- Can be even adversarial!
- Explains partially why BHq is so robust

Theorem

IWS on the subset of true nulls + compliance with the BHq critical values $q \boldsymbol{j} / \boldsymbol{m}$ give

$$\begin{aligned} \mathsf{FDR} &\leq q \log(1/q) + Cq \\ \mathsf{FDR}_2 &\leq Cq \\ \mathsf{FDR}_k &\leq \left(1 + 2/\sqrt{qk}\right)q. \end{aligned}$$

- Arbitrary correlations between true null and false null test statistics
- Can be even adversarial!
- Explains partially why BHq is so robust
- If $V \to \infty$ with probability tending to one, then $\mathsf{FDR} \leq q + o(1)$

Proof Sketch

An upper bound on FDP

Let p_{i_1}, \ldots, p_{i_R} be those rejected, among which $p_{(1)}^0 \leq \cdots \leq p_{(V)}^0$ are from *true nulls*.

An upper bound on FDP

Let p_{i_1}, \ldots, p_{i_R} be those rejected, among which $p_{(1)}^0 \leq \cdots \leq p_{(V)}^0$ are from *true nulls*. Compliance requires

$$p_{(V)}^0 \le \max_{1 \le j \le R} p_{i_j} \le \alpha_R = qR/m$$

An upper bound on FDP

Let p_{i_1}, \ldots, p_{i_R} be those rejected, among which $p_{(1)}^0 \leq \cdots \leq p_{(V)}^0$ are from *true nulls*. Compliance requires

$$p_{(V)}^0 \le \max_{1 \le j \le R} p_{i_j} \le \alpha_R = qR/m$$

Hence

$$\begin{split} &R \geq \lceil mp_{(V)}^{0}/q \rceil \\ \Rightarrow & \frac{V}{\max\{R,1\}} \leq \frac{V}{\lceil mp_{(V)}^{0}/q \rceil} \\ \Rightarrow & \text{FDP} \leq \max_{2 \leq j \leq m_{0}} \frac{j}{\lceil mp_{(j)}^{0}/q \rceil} + \min\left\{\frac{1}{\lceil mp_{(1)}^{0}/q \rceil}, 1\right\} \end{split}$$

*m*₀ is the total number of true nulls

Lemma

•
$$\mathbb{E} \max_{2 \le j \le m_0} \frac{j}{\lceil m p_{(j)}^0 / q \rceil} \le C_1 q$$

•
$$\mathbb{E} \min\left\{\frac{1}{\lceil m p_{(1)}^0 / q \rceil}, 1\right\} \le q \log \frac{1}{q} + C_2 q$$

for some absolute constants C_1 and C_2

Lemma

•
$$\mathbb{E} \max_{2 \le j \le m_0} \frac{j}{\lceil m p_{(j)}^0 / q \rceil} \le C_1 q$$

•
$$\mathbb{E} \min\left\{\frac{1}{\lceil m p_{(1)}^0 / q \rceil}, 1\right\} \le q \log \frac{1}{q} + C_2 q$$

for some absolute constants C_1 and C_2

• Assume $m_0 = m$

Lemma

•
$$\mathbb{E} \max_{2 \le j \le m_0} \frac{j}{\lceil m p_{(j)}^0 / q \rceil} \le C_1 q$$

•
$$\mathbb{E} \min\left\{\frac{1}{\lceil m p_{(1)}^0 / q \rceil}, 1\right\} \le q \log \frac{1}{q} + C_2 q$$

for some absolute constants C_1 and C_2

- Assume $m_0 = m$
- Assume all true null *p*-values are iid uniform on [0, 1]

Lemma

•
$$\mathbb{E} \max_{2 \le j \le m} \frac{j}{\lceil mU_{(j)}/q \rceil} \le C_1 q$$

•
$$\mathbb{E} \min\left\{\frac{1}{\lceil mU_{(1)}/q \rceil}, 1\right\} \le q \log \frac{1}{q} + C_2 q$$

for some absolute constants C_1 and C_2

- Assume $m_0 = m$
- Assume all true null p-values are iid uniform on [0,1]
- Let U_1, U_2, \ldots, U_m be iid and uniform on [0, 1]

Using Rényi's representation

Wish to prove

$$\mathbb{E}\max_{2 \le j \le m} \frac{j}{\lceil mU_{(j)}/q \rceil} \le C_1 q$$

Using Rényi's representation

Wish to prove

$$\mathbb{E}\max_{2 \le j \le m} \frac{j}{\lceil mU_{(j)}/q \rceil} \le C_1 q$$

Let ξ_1, \ldots, ξ_{m+1} be iid exponential random variables

$$(U_{(1)}, U_{(2)}, \dots, U_{(m)}) \stackrel{d}{=} \left(\frac{T_1}{T_{m+1}}, \frac{T_2}{T_{m+1}}, \dots, \frac{T_m}{T_{m+1}}\right)$$

• $T_j = \xi_1 + \dots + \xi_j$

Using Rényi's representation

Wish to prove

$$\mathbb{E}\max_{2 \le j \le m} \frac{j}{\lceil mU_{(j)}/q \rceil} \le C_1 q$$

Let ξ_1, \ldots, ξ_{m+1} be iid exponential random variables

$$(U_{(1)}, U_{(2)}, \dots, U_{(m)}) \stackrel{d}{=} \left(\frac{T_1}{T_{m+1}}, \frac{T_2}{T_{m+1}}, \dots, \frac{T_m}{T_{m+1}}\right)$$

• $T_j = \xi_1 + \dots + \xi_j$

•
$$\frac{j}{\lceil mU_{(j)}/q \rceil} \le \frac{qj}{mU_{(j)}} = \frac{q}{m} \cdot \frac{jT_{m+1}}{T_j} \equiv \frac{q}{m} \cdot W_j$$

• $W_j \equiv jT_{m+1}/T_j$

W_j is a backward submartingale

Wish to prove

$$\mathbb{E}\max_{2\le j\le m}\frac{W_j}{m}\le C_1$$

Submartingale definition

 $\mathbb{E}(W_j|T_{j+1},\ldots,T_{m+1}) \ge W_{j+1}$

W_j is a backward submartingale

Wish to prove

$$\mathbb{E}\max_{2\le j\le m}\frac{W_j}{m}\le C_1$$

Submartingale definition

$$\mathbb{E}(W_j|T_{j+1},\ldots,T_{m+1}) \ge W_{j+1}$$

By martingale theory

$$\mathbb{E}\max_{2\leq j\leq m} \frac{W_j}{m} \leq (1-\mathrm{e}^{-1})^{-1} \left[1 + \mathbb{E}\left(\frac{W_2}{m}\log\frac{W_2}{m}; \frac{W_2}{m} \geq 1\right) \right]$$

W_j is a backward submartingale

Wish to prove

$$\mathbb{E}\max_{2\le j\le m}\frac{W_j}{m}\le C_1$$

Submartingale definition

$$\mathbb{E}(W_j|T_{j+1},\ldots,T_{m+1}) \ge W_{j+1}$$

By martingale theory

$$\mathbb{E} \max_{2 \le j \le m} \frac{W_j}{m} \le (1 - e^{-1})^{-1} \left[1 + \mathbb{E} \left(\frac{W_2}{m} \log \frac{W_2}{m}; \frac{W_2}{m} \ge 1 \right) \right]$$

$$\le (1 - e^{-1})^{-1} \left[1 + \mathbb{E} \left(\frac{2}{mU_{(2)}} \log \frac{2}{mU_{(2)}}; \frac{2}{mU_{(2)}} \ge 1 \right) \right]$$

$$\le C_1$$

Summary

Take-home message

- FDR addresses reproducibility
- Differential privacy is a rigorous definition
- Privatize BH by adding noise in peeling
- A bonus: Compliance with IWS gives FDR control

Take-home message

- FDR addresses reproducibility
- Differential privacy is a rigorous definition
- Privatize BH by adding noise in peeling
- A bonus: Compliance with IWS gives FDR control

Thank You!