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Privacy loss

e Second Netflix challenge canceled
e AOL search data leak

e Inference presence of individual from minor allele frequencies [Homer et al
'08]
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This talk: privacy-preserving multiple testing

A hypothesis H could be
e |s the SNP associated with diabetes?
e Does the drug affect autism?
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This talk: privacy-preserving multiple testing

A hypothesis H could be
e |s the SNP associated with diabetes?
e Does the drug affect autism?

® Preserve privacy
e Control false discovery rate (FDR)

Application
e Genome-wide association studies
e A/Btesting
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Outline

@ Warm-ups
e FDR and BHq procedure
o Differential privacy
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Two types of errors

Not reject

Reject Total

Null istrue  True negative

Null is false  False negative

False positive  myg

True positive  my

Total

m
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False discovery rate (FDR)

#false discoveries

FDR :=E
#discoveries

estimated model
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False discovery rate (FDR)

true model

#false discoveries 200

FDR :=E =
#discoveries 100 + 200

estimated model

e Wish FDR < ¢ (often ¢ = 0.05,0.1)
e Proposed by Benjamini and Hochberg '95
e 35,490 citations as of yesterday
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Why FDR?
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FDR addresses reproducibility
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How to control FDR?
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p-values of hypotheses

The probability of finding the observed, or more extreme, results when the null
hypothesis of a study question is true

e Uniform in [0, 1] (or stochastically larger) under true null
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Benjamini-Hochberg procedure (BHg)

p-values
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Benjamini-Hochberg procedure (BHg)

0.8 1.0
|

p-values
0.6

0.4

0.2
|

Let p1,pa, . .., pm be p-values of m hypotheses

0.0

10 15
sorted index

Sort pi1y < -+ < P(m)

Draw rank-dependent
threshold gj/m

Reject hypotheses below
cutoffs

Under independence
FDR <g¢q
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What is privacy?

e My response had little impact on released results

e Any adversary cannot learn much information about me based on released
results

e Anonymity may not work

e |s the Benjamini-Hochberg procedure (BH) privacy-preserving?
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BHq is sensitive to perturbations
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A concrete foundation of privacy

Let M be a (random) data-releasing mechanism

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

M is called (e, §)-differentially private if for all databases D and D’ differing
with one individual, and all S € Range(M),

P(M(D) € 8) < e P(M(D') € S) + 6

16 /40



A concrete foundation of privacy

Let M be a (random) data-releasing mechanism

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

M is called (e, §)-differentially private if for all databases D and D’ differing
with one individual, and all S € Range(M),

P(M(D) € 8) < e P(M(D') € S) + 6

e Probability space is over the randomness of M

16 /40



A concrete foundation of privacy

Let M be a (random) data-releasing mechanism

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

M is called (e, §)-differentially private if for all databases D and D’ differing
with one individual, and all S € Range(M),

P(M(D) € 8) < e P(M(D') € S) + 6

e Probability space is over the randomness of M
e If § = 0 (pure privacy),
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A concrete foundation of privacy

Differential privacy (Dwork, McSherry, Nissim, Smith '06)

For all neighboring databases D and D',

P(M(D) € ) < e P(M(D') € S) + 6

ratio bounded

Pr [response]

Bad Responses: 7 y4 y4
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An addition to a vast literature

e Counts, linear queries, histograms, contingency tables
e Location and spread

e Dimension reduction (PCA, SVD), clustering

e Support vector machine

e Sparse regression, Lasso, logistic regression

e Cradient descent

e Boosting, multiplicative weights

e Combinatorial optimization, mechanism design

e Kalman filtering

e Statistical queries learning model, PAC learning
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e Counts, linear queries, histograms, contingency tables
e Location and spread

e Dimension reduction (PCA, SVD), clustering

e Support vector machine

e Sparse regression, Lasso, logistic regression

e Cradient descent

e Boosting, multiplicative weights

e Combinatorial optimization, mechanism design
e Kalman filtering

e Statistical queries learning model, PAC learning
e FDR control
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Laplace noise

Lap(b) has density exp(—|z|/b)/2b

0.5 F 1

0.4 b

03 F b

0.2 F E
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Achieving (e, 0)-differential privacy: a vignette

How many members of the House of Representatives voted for Trump?
e Sensitivity is 1

e Add symmetric noise Lap(2) to the counts

€
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Achieving (e, 0)-differential privacy: a vignette

How many members of the House of Representatives voted for Trump?
e Sensitivity is 1

e Add symmetric noise Lap(2) to the counts

€

How many albums of Taylor Swift are bought in total by people in this room?
e Sensitivity is 5

e Add symmetric noise Lap(2) to the counts
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Outline

@ Introducing PrivateBHq
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Sensitivity of p-values

e Additive noise can kill signals when p-values are small
e Solution: take logarithm of p-values
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Sensitivity of p-values

e Additive noise can kill signals when p-values are small
e Solution: take logarithm of p-values

Databases D and D’ are adjacent.

Tuples (p1(D), ..., pm (D)) and (p1(D’),...,pm(D")) are called
(n, v)-multiplicatively sensitive if, for all ¢,

e either p;(D),p;(D’) < v, or
* e pi(D) < pi(D') < e"pi(D)

e 7; = logmax{p;(D), v} has sensitivity n
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Examples of multiplicatively Sensitive p-values

iid &, ..., &, taking 1 with probability of o and O otherwise. T is the sum. To test
Hy:a < }against Hy t o > 3

p(D) = zn: 2% (7)

=T

1
Assume m = n®. Then we can take v = m~2 and = n—z+o(1)
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Building blocks of PrivateBHg
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Private Min

a.k.a. Report Noisy Min

Algorithm 1: Private Min
Input: 7y, -, mp,
1 fori =1tomdo
2 setw? =m; + g; where g; is i.i.d. Lap(ny/10klog(1/0)/¢)
3: end for
4 return (* = argmin 77, 7 = m;« + g) where g ~ Lap(ny/10k log(1/6)/¢)

e Private Min is (2¢/4/10k log(1/6), 0)-differentially privacy

® |ess noise [Raskhodnikova and Smith 16]
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Pre-selection by peeling

Algorithm 2: Peeling

Input: 71, , 7y and k
1. forj=1tokdo
2 run Private Min
3 remove selected m;+
4. end for
5. report k selected pairs (i, 7;)
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Pre-selection by peeling

Algorithm 2: Peeling

Input: 71, , Ty and k
1 forj=1tokdo
2 run Private Min
3 remove selected m;+
4. end for
5. report k selected pairs (i, 7;)

peeling(k) is (e, §)-differentially private

e Asimple application of Advanced Composition Theorem [Dwork, Rothblum,
and Vadhan "10]
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Finally, PrivateBHq

Algorithm 3: PrivateBHq

Input: (7, v)-sensitive p-values p1,--- ,pm, k> 1and ¢, 0
Output: a set of up to k rejected hypotheses
1. set m; = log(max{p;, v})
2. apply peeling(k) to 71,..., T,
3: apply BHq to yl, ..., Yk with cutoffs a; = log(gj/m + v) +nA, where

A= (14o0(1))y/klog(1/0)logm/e
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Finally, PrivateBHq

Algorithm 3: PrivateBHq

Input: (7, v)-sensitive p-values p1,--- ,pm, k> 1and ¢, 0
Output: a set of up to k rejected hypotheses
1. set m; = log(max{p;, v})
2. apply peeling(k) to 71,..., T,
3: apply BHq to yl, ..., yr with cutoffs a;; = log(qj/m + v) +nA, where

A= (14o0(1))y/klog(1/0)logm/e

Theorem (Dwork, S., and Zhang)

The PrivateBHq is (e, 0)-differentially private
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Outline

© Proof of FDR control
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New techniques required

e Smallest p-values may not be selected
e Difficult to specify the joint distribution of selected p-values

e Destroys crucial properties for proving FDR control
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Compliant procedures

A procedure is called compliant with {g;}", if all the R rejected p-values are

j=1
below qr
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Compliant procedures

A procedure is called compliant with {g;}", if all the R rejected p-values are

=1
below qr

e Self-consistency condition [Blanchard and Roquain '08]
e Step-up and step-down BHgs are {jq/m}-compliant

e So are the generalized step-up-step-down procedures [Tamhane, Liu, and
Dunnett '98; Sarkar 02]

e How about the PrivateBHq?
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PrivateBHq is compliant

Given (n, v)-sensitive p-values with v = o(1/m), then with probability 1 — o(1),
the private FDR-controlling algorithm is compliant with {jq' /m}, where
¢ = (1+0(1))e" g
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Compliance + IWS = FDR control

A set of test statistics are called to satisfy the independence within a subset T
(IWS on Zy), if the test statistics from Z are jointly independent.
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Compliance + IWS = FDR control

Definition

A set of test statistics are called to satisfy the independence within a subset T
(IWS on Zy), if the test statistics from Z are jointly independent.

Theorem

Suppose the test statistics satisfies IWS on the subset of true null hypotheses.
Then any procedure compliant with the BHq critical values qj/m obeys

| \

FDR < ¢log(1/q) + Cq
FDR, < Cq

FDR; < (1 n 2/@) g

e FDRy:=E[%;V > k]
e C=m27
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Compliance + IWS = FDR control

Theorem
IWS on the subset of true nulls + compliance with the BHq critical values qj /m
give

FDR < glog(1/q) + Cq

FDR2 < C’q

FORy < (1+2/V/ak) a.

e Arbitrary correlations between true null and false null test statistics
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Compliance + IWS = FDR control

Theorem

IWS on the subset of true nulls + compliance with the BHq critical values qj /m
give

FDR < glog(1/q) + Cq

FDR2 < C’q

FORy < (1+2/V/ak) a.

Arbitrary correlations between true null and false null test statistics

Can be even adversariall

Explains partially why BHq is so robust
If V' — oo with probability tending to one, then FDR < ¢ + o(1)
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Proof Sketch
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An upper bound on FDP

Let/lpil, ..., Pip be those rejected, among which p?l) <. < p?v) are from true
nulls.
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An upper bound on FDP

Let p;,, ..., iy be those rejected, among which p?l) <. < p?v) are from true
nulls. Compliance requires

0 —
Pv) < max pi; < ap = ¢R/m

Hence 0
R > [mp(y /4l
N \% < \%
max{R, 1} = [mpfy/q]

j - !
=FDP < max ——— +min{ ———.1
2<j<mo [mp(; /4] { [mplyy/a] }

® 1y is the total number of true nulls
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Bounding the two terms

Lemma

|

e E max ——— < (
285%mo Tmpl Jq] =

1 1
¢ Emin{ ——5——=,1, <qlog— + Caq
[mp(l)/q] q

for some absolute constants C; and Cy
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Bounding the two terms

Lemma

J
e £ max ——— <
2<j<mo [mp(;y/q] ~ e

1 1
¢ Emin{ ——F5——,1; < qlog— + Caq
[mp(l)/q] q

for some absolute constants C; and Cy

e Assume mg =m

e Assume all true null p-values are iid uniform on [0, 1]
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Bounding the two terms

Lemma

J
e FE max ——— < (C
297 Em [mUgy/q] — 1

1
° ]Emin{ < qlog — + Caq
q

1
mUy/al’ 1}

for some absolute constants C; and C5

e Assume mg =m
e Assume all true null p-values are iid uniform on [0, 1]
e LetUy,Us,...,U, beiid and uniform on [0, 1]
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Using Rényi’s representation

Wish to prove

J
E max ——— < (C4q
2<j<m [mU(J)/q]

37/40



Using Rényi’s representation

Wish to prove
E ——<C
22 Sm [mU Jq]

Let &1, ..., &m+1 beiid exponential random variables

e Ti=&L+-+¢&

37/40



Using Rényi’s representation

Wish to prove

E max ———— <
2<j<m [mUg)/q] — 1
Let &1, ..., &{m+1 beiid exponential random variables
d Ty T () )
Uny, Uy, ..., U, = , e
( @ @ (m)) <Tm+1 Tm+1 Tm+1

o Ti=&+---+&

J g g JjTnt
S — .
(mUg/q] — mUgyy  m T

3=

W

o W; =T /T;
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W; is a backward submartingale

Wish to prove

W,
E max — <
2<j<m m

Submartingale definition

E(W]|TJ+17 900 7Tm+1) Z Wj+1
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W; is a backward submartingale

Wish to prove

W,
E max — <
2<j<m m

Submartingale definition

E(W]|TJ+17 iR 7Tm+1) Z Wj+1

By martingale theory
E max Wi <(1—eHt {1—1—1&7 <%logm Ws > 1)]
2<j<m m m m’°- m
2 2 2
lo >1
mU(Q) & mU(z) mU(z) - >}

<@1-eH7! {1 +E <
<G
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Summary
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Take-home message

FDR addresses reproducibility

Differential privacy is a rigorous definition

Privatize BH by adding noise in peeling

e Abonus: Compliance with IWS gives FDR control
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Take-home message

FDR addresses reproducibility

Differential privacy is a rigorous definition

Privatize BH by adding noise in peeling

e Abonus: Compliance with IWS gives FDR control

Thank You!
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