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Model selection

I Observe data (y ,X ), X ∈ Rn×p, y ∈ Rn

I model = lm(y ∼ X1 + X2 + X3 + X4)
model = lm(y ∼ X1 + X2 + X4)
model = lm(y ∼ X1 + X3 + X4)

I Inference after model selection

1. Use data to select a set of variables E
2. Normal z-test to get p-values

I Problem: inflated significance

1. Normal z-tests need adjustment
2. Selection is biased towards “significance”
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Inflated Significance
Setup:

I X ∈ R100×200 has i.i.d normal entries
I y = Xβ + ε, ε ∼ N(0, I )
I β = (5, . . . , 5︸ ︷︷ ︸

10

, 0, . . . , 0)

I LASSO, nonzero coefficient set E
I z-test, null pvalues for i ∈ E , i 6∈ {1, . . . , 10}
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Selective inference: features and caveat

I Specific to particular selection procedures

I Exact post-selection test

I More powerful test



Selective inference: popping the hood
Consider the selection for “big effects”:

I X1, . . . ,Xn
i .i .d∼ N(0, 1), X =

∑n
i=1 Xi

n
I Select for “big effects”, X > 1
I Observation: X obs = 1.1, with n = 5
I Normal z-test v.s. selective test for H0 : µ = 0.
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Selective inference: in a nutshell

I Selection, e.g. X > 1.
I Change of the reference measure

I the conditional distribution, e.g. N(µ, 1n ), truncated at 1.

I Target of inference may depend on the outcome of selection
I Example: selection by LASSO



What is the “selected” model?

Suppose a set of variables E are suggested by the data for further
investigation.

I Selected model by Fithian et al. (2014):

ME = {N(XEβE , σ
2
E I ), βE ∈ R|E |, σ2

E > 0}.

Target is βE .

I Full model by Lee et al. (2016), Berk et al. (2013):

M = {N(µ, σ2I ), µ ∈ Rn}.

Target is βE (µ) = X †Eµ.

I Nonparametric model:

M = {⊗nF : (X ,Y ) ∼ F}.

Target is βE (F ) = EF [XT
E XE ]−1EF [XE · Y ].

A tool for valid inference after exploratory data analysis.
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Selective inference on a DAG

E

X∗, y∗

ωX, y

Ē

I Incoporate randomness through ω

1. (X ∗, y∗) = (X , y)
2. (X ∗, y∗) = (X1, y1)
3. (X ∗, y∗) = (X , y + ω)

I Reference measure conditioning on
E , the yellow node.

I Target of inference can be E

1. Not E , but depends on the data
through E

2. “Liberating” target of inference
from selection

3. E incorporate knowledge from
previous literature.



From selective inference to adaptive data analysis
Denote the data by S

E

ωS

Ē



From selective inference to adaptive data analysis
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ω2ω1

Ē

E1 E2

S

Example: marginal screening + LASSO on half of the dataset
respectively.



Reference measure after selection

I Given any point null F0, use the conditional distribution F ∗0 as
reference measure,

dF ∗0
dF0

(S) = `F (S).

I `F is called the selective likelihood ratio. Depends on the
selection algorithm and the randomization distribution ω ∼ G .

I Tests of the form H0 : θ(F ) = θ0 can be reduced to testing
point nulls, e.g.

I Score test
I Conditioning in exponential families



Computing the reference measure after selection
I Selection map Q̂ results from an optimization problem,

β̂(S , ω) = arg min
β

`(S ;β) + P(β) + ωTβ.

E is the active set of β̂.
I Selection region A(S) = {ω : Q̂(S , ω) = E}, ω ∼ G

dF ∗0
dF0

(S) =

∫
A(S)

dG (ω).

E

ωS

{Q̂(S , ω) = E} is difficult to
describe.
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Let ẑ(S , ω) be the subgradient of the optimization problem.

E

ẑ−Eβ̂ES
{(β̂E , ẑ−E ) ∈ B}, B
depends only on the
penalty P.



Monte-Carlo sampler for the conditional distribution

Suppose F0 has density f0 and G has density g ,

E

ẑ−Eβ̂ES dF ∗0
dF0

(S)

=

∫
B
g(ψ(S , β̂E , ẑ−E ))d β̂Edẑ−E ,

where ω = ψ(S , β̂E , ẑ−E ).

I The reparametrization map ψ is easy to compute, Harris et al.
(2016)

I In simulation, we jointly sample (S , β̂E , ẑ−E ) from the density
below,

f0(S)g(ψ(S , β̂E , ẑ−E ))1B.

Samples of S can be used as reference measure for selective
inference.



Interactive Data Analysis
Easily generalizable in a sequential/interactive fashion.

E

ẑ−Eβ̂ES

f0(S)g(ψ(S , β̂E , ẑ−E ))1B.

I Flexible framework. Any selection procedure resulting from a
“Loss + Penalty” convex problem.

I Examples such as Lasso, logistic Lasso, marginal screening,
forward stepwise, graphical Lasso, group Lasso, are considered
in Harris et al. (2016).

I Many more is possible.
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ẑ−E2ẑ−E1

E1

β̂E2β̂E1 S

f0(S)g(ψ1(S , β̂E1 , ẑ−E1))1B1 · g(ψ2(S , β̂E2 , ẑ−E2))1B2 .
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Summary

I Selective inference on a DAG

I Selection: more than one shot

I Feasible implementation of the selective tests
https://github.com/selective-inference/Python-software

Thank you!
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