p-filter: Multilayer False Discovery Rate for grouped hypotheses

Aaditya Ramdas

University of California, Berkeley
www.cs.berkeley.edu/~aramdas/

Joint work with (the excellent) Rina Foygel Barber, Martin Wainwright and Mike Jordan

Multiple comparisons \& FDR control

Multiple comparisons \& FDR control

Central Question:

When testing n different null hypotheses simultaneously, how do we determine which effects are significant?

Multiple comparisons \& FDR control

Central Question:

When testing n different null hypotheses simultaneously, how do we determine which effects are significant? and take prior structural knowledge into account while doing this? (selective inference with structure)

Multiple comparisons \& FDR control

Central Question:

When testing n different null hypotheses simultaneously, how do we determine which effects are significant? and take prior structural knowledge into account while doing this? (selective inference with structure)

Example

True signals

Data: $Z_{i} \sim \mathcal{N}(\mu, 1), P_{i}=1-\Phi\left(Z_{i}\right)$ for 1000 hypotheses.
10×100 grid : $\mu>0$ for 100 pixels, $\mu=0$ for 900 pixels.
True signals have "small" p-values. Nulls have uniform p-values.

Example

Benjamini Hochberg with entry-level target FDR $=0.2$.

Example

\mathbf{p}-Filter with entry-level and column-level target FDR $=0.2$

Multiple comparisons \& FDR control

How can we incorporate additional information into the procedure?

Multiple comparisons \& FDR control

How can we incorporate additional information into the procedure?

- If the hypotheses have a natural clustered / hierarchical structure, how can we take this into account?

Multiple comparisons \& FDR control

How can we incorporate additional information into the procedure?

- If the hypotheses have a natural clustered / hierarchical structure, how can we take this into account?
- You may want to group together hypotheses that are likely to be null together or be non-null together.

Multiple comparisons \& FDR control

How can we incorporate additional information into the procedure?

- If the hypotheses have a natural clustered / hierarchical structure, how can we take this into account?
- You may want to group together hypotheses that are likely to be null together or be non-null together.
- In spatio-temporal applications, it might be natural to group hypotheses by space or time or space-time blocks. "Discovery at time/location x makes discoveries around x more likely".

Multiple comparisons \& FDR control

How can we incorporate additional information into the procedure?

- If the hypotheses have a natural clustered / hierarchical structure, how can we take this into account?
- You may want to group together hypotheses that are likely to be null together or be non-null together.
- In spatio-temporal applications, it might be natural to group hypotheses by space or time or space-time blocks. "Discovery at time/location x makes discoveries around x more likely".
- In genetics, certain genes/proteins might be known to act together, or have similar molecular structure.
- We might have some prior guess about which hypotheses are more likely to be null or non-null.

Goal (in English)

- Given n hypotheses with p-values $P:=\left\{P_{1}, \ldots, P_{n}\right\}$

Goal (in English)

- Given n hypotheses with p-values $P:=\left\{P_{1}, \ldots, P_{n}\right\}$ Eg: Imagine they are placed in a $r \times c$ grid, $n=r c$.

Goal (in English)

- Given n hypotheses with p-values $P:=\left\{P_{1}, \ldots, P_{n}\right\}$

Eg: Imagine they are placed in a $r \times c$ grid, $n=r c$.

- Given M partitions (disjoint subsets of P, whose union is P)

Goal (in English)

- Given n hypotheses with p-values $P:=\left\{P_{1}, \ldots, P_{n}\right\}$ Eg: Imagine they are placed in a $r \times c$ grid, $n=r c$.
- Given M partitions (disjoint subsets of P, whose union is P) Partition 1 could be the set of all singletons, Partition 2 could be the set of all rows, and Partition 3 could be the set of all columns.

Goal (in English)

- Given n hypotheses with p-values $P:=\left\{P_{1}, \ldots, P_{n}\right\}$

Eg: Imagine they are placed in a $r \times c$ grid, $n=r c$.

- Given M partitions (disjoint subsets of P, whose union is P)

Partition 1 could be the set of all singletons,
Partition 2 could be the set of all rows, and
Partition 3 could be the set of all columns.

- Goal: select set $\widehat{S} \subseteq[n]$ such that FDR is bounded simultaneously for partition $1,2, \ldots, M$.
Few falsely discovered singletons,
Few falsely discovered rows,
Few falsely discovered columns.
p-Filter: will discover $\hat{S} \subseteq[n]$ such that FDR is simultaneously controlled for all partitions.

Multilayer FDR

					Simes p-value				
$\alpha_{\text {indiv }}=0.1$	Group 1	0.03	0.01	0.18	0.04	0.08	0.05		
$\alpha_{\text {group }}=0.2$	Group 2	0.05	0.11	0.06	0.01	0.89	0.05		
		Group 3	0.14	0.12	0.58	0.11	0.11	0.18	
		Group 4	0.88	0.24	0.09	0.66	0.45	0.45	

Multilayer FDR

Multilayer FDR

Observe: If we first (somehow) select which groups to reject, and then naively run BH on hypotheses within those groups, we may not control FDR at the individual level.

Observe: If we first (somehow) select which groups to reject, and then naively run BH on hypotheses within those groups, we may not control FDR at the individual level.

Observe: Even if we corrected for selection, and then run BH , we may end up with "empty rejected groups" - we may have groups that were rejected, within which no hypotheses were rejected.

Observe: If we first (somehow) select which groups to reject, and then naively run BH on hypotheses within those groups, we may not control FDR at the individual level.

Observe: Even if we corrected for selection, and then run BH , we may end up with "empty rejected groups" - we may have groups that were rejected, within which no hypotheses were rejected.
Observe: Alternately, if we first rejected individual hypotheses, and then rejected all groups in which there was a rejected hypothesis, it may not control group FDR.

Observe: If we first (somehow) select which groups to reject, and then naively run BH on hypotheses within those groups, we may not control FDR at the individual level.

Observe: Even if we corrected for selection, and then run BH , we may end up with "empty rejected groups" - we may have groups that were rejected, within which no hypotheses were rejected.
Observe: Alternately, if we first rejected individual hypotheses, and then rejected all groups in which there was a rejected hypothesis, it may not control group FDR.

FDR control with "internal consistency":

Every rejected hypothesis is in some rejected group, and every rejected group contains at least one rejected hypothesis.

The p-Filter algorithm

Input: n p-values, M partitions, M FDR levels
Let $t_{1}=\alpha_{1}, \ldots, t_{M}=\alpha_{M}$. Repeat $m=1, \ldots, M$, until no change:

Input: n p-values, M partitions, M FDR levels
Let $t_{1}=\alpha_{1}, \ldots, t_{M}=\alpha_{M}$. Repeat $m=1, \ldots, M$, until no change:

- For the m th partition, Simes+thresholding
- Calculate Simes p-values $P^{m}:=\left\{P_{1}^{m}, \ldots, P_{G}^{m}\right\}$
- Reject all groups whose $P_{g}^{m} \leq t_{m}$.

The p-Filter algorithm

Input: n p-values, M partitions, M FDR levels

Let $t_{1}=\alpha_{1}, \ldots, t_{M}=\alpha_{M}$. Repeat $m=1, \ldots, M$, until no change:

- For the m th partition, Simes+thresholding
- Calculate Simes p-values $P^{m}:=\left\{P_{1}^{m}, \ldots, P_{G}^{m}\right\}$
- Reject all groups whose $P_{g}^{m} \leq t_{m}$.
- $\widehat{S}:=\left\{P_{i}\right.$: in every partition, P_{i} 's group was selected $\}$, intersect Let \widehat{S}_{m} be the discovered groups in partition m, induced by \widehat{S}.

The p-Filter algorithm

Input: n p-values, M partitions, M FDR levels
Let $t_{1}=\alpha_{1}, \ldots, t_{M}=\alpha_{M}$. Repeat $m=1, \ldots, M$, until no change:

- For the m th partition, Simes+thresholding
- Calculate Simes p-values $P^{m}:=\left\{P_{1}^{m}, \ldots, P_{G}^{m}\right\}$
- Reject all groups whose $P_{g}^{m} \leq t_{m}$.
- $\widehat{S}:=\left\{P_{i}\right.$: in every partition, P_{i} 's group was selected $\}$, intersect Let \widehat{S}_{m} be the discovered groups in partition m, induced by \widehat{S}.
- Estimate FDP's for each partition: correction

$$
\widehat{\mathrm{FDP}}_{m}=\frac{t_{m} \cdot G_{m}}{\left|\widehat{S}_{m}\right|} \leftarrow \text { approx. \# false discoveries }
$$

If $\widehat{\mathrm{FDP}}_{m}>\alpha_{m}$, reduce t_{m} until $\widehat{\mathrm{FDP}}_{m}$ is $\leq \alpha_{m}$ (discrete search)

The p-Filter algorithm

Input: n p-values, M partitions, M FDR levels
Let $t_{1}=\alpha_{1}, \ldots, t_{M}=\alpha_{M}$. Repeat $m=1, \ldots, M$, until no change:

- For the m th partition, Simes+thresholding
- Calculate Simes p-values $P^{m}:=\left\{P_{1}^{m}, \ldots, P_{G}^{m}\right\}$
- Reject all groups whose $P_{g}^{m} \leq t_{m}$.
- $\widehat{S}:=\left\{P_{i}\right.$: in every partition, P_{i} 's group was selected $\}$, intersect Let \widehat{S}_{m} be the discovered groups in partition m, induced by \widehat{S}.
- Estimate FDP's for each partition: correction

$$
\widehat{\mathrm{FDP}}_{m}=\frac{t_{m} \cdot G_{m}}{\left|\widehat{S}_{m}\right|} \leftarrow \text { approx. \# false discoveries }
$$

If $\widehat{\mathrm{FDP}}_{m}>\alpha_{m}$, reduce t_{m} until $\widehat{\mathrm{FDP}}_{m}$ is $\leq \alpha_{m}$ (discrete search)
Note: Simes and BH are special cases when $M=1$.

Theorem 2
p-Filter finds "maximum legal threshold", and it controls FDR simultaneously $\forall m$:

$$
\text { FDR for partition } m=\mathbb{E}\left[\frac{\left|\mathcal{H}_{m}^{0} \cap \widehat{S}_{m}\right|}{\left|\widehat{S}_{m}\right|}\right] \leq \alpha_{m} \cdot \frac{\left|\mathcal{H}_{m}^{0}\right|}{G_{m}} \forall m
$$

Furthermore, it halts in $G_{1}+G_{2}+\ldots+G_{M}+1$ outer loops.

Theorem 2
p-Filter finds "maximum legal threshold", and it controls FDR simultaneously $\forall m$:

$$
\text { FDR for partition } m=\mathbb{E}\left[\frac{\left|\mathcal{H}_{m}^{0} \cap \widehat{S}_{m}\right|}{\left|\widehat{S}_{m}\right|}\right] \leq \alpha_{m} \cdot \frac{\left|\mathcal{H}_{m}^{0}\right|}{G_{m}} \forall m
$$

Furthermore, it halts in $G_{1}+G_{2}+\ldots+G_{M}+1$ outer loops.
Does not depend on order of specifying partitions.

Simulation results

True signals

p-Filter: entries + rows + columns (3 partitions)
BB: entries + rows (2 partitions, constrained to be hierarchical)
BH: entries only
Target FDR: $\alpha_{\text {entries }}=\alpha_{\text {rows }}=\alpha_{\text {columns }}=0.2$

Simulation results

BH

p-Filter: entries + rows + columns (3 partitions)
BB: entries + rows (2 partitions, constrained to be hierarchical)
BH: entries only
Target FDR: $\alpha_{\text {entries }}=\alpha_{\text {rows }}=\alpha_{\text {columns }}=0.2$

Simulation results

p-filter

p-Filter: entries + rows + columns (3 partitions)
BB: entries + rows (2 partitions, constrained to be hierarchical)
BH: entries only
Target FDR: $\alpha_{\text {entries }}=\alpha_{\text {rows }}=\alpha_{\text {columns }}=0.2$

Simulation results

By entry

Simulation results

By row

Simulation results

By column

Simulation results

By entry

A neuroscience example

- 8 subjects read Chapter 9 of Harry Potter, 1 word $=0.5 \mathrm{sec}$.
- fMRI recording: 40,000 voxels, 1 scan $=2 \mathrm{sec}$.
- Consider semantic features of the text (NLP techniques).
- Try to find dependence between text presented at time t with voxel activity at time $t+\delta$, for delay $\delta=0,2,4,6,8 \mathrm{sec}$.
- One p-value per voxel, per delay δ.
- Can group by space, time or space-time blocks.

A neuroscience example

Summary:

- $m=1$: p -Filter is a strict generalization of BH and Simes.

[^0]Summary:

- $m=1$: p -Filter is a strict generalization of BH and Simes.
- $m>1$: p -Filter controls FDR simultaneously for all partitions.
${ }^{1}$ Code: http://www.stat.uchicago.edu/~rina/pfilter.html

Summary:

- $m=1$: p -Filter is a strict generalization of BH and Simes.
- $m>1$: p -Filter controls FDR simultaneously for all partitions.
- Flexibly allows the user to incorporate prior information, resulting in higher precision of the rejected hypotheses.

[^1]
Big Picture ${ }^{1}$

Summary:

- $m=1$: p -Filter is a strict generalization of BH and Simes.
- $m>1$: p -Filter controls FDR simultaneously for all partitions.
- Flexibly allows the user to incorporate prior information, resulting in higher precision of the rejected hypotheses.
- Can incorporate weights, at hypothesis and group level.
- Can incorporate "null-proportion" estimation.
- Can have overlapping groups, incomplete partitions, etc.

Orthogonal Works (in progress):

- Improved algorithms for online FDR.

[^2]
Big Picture ${ }^{1}$

Summary:

- $m=1$: p -Filter is a strict generalization of BH and Simes.
- $m>1$: p -Filter controls FDR simultaneously for all partitions.
- Flexibly allows the user to incorporate prior information, resulting in higher precision of the rejected hypotheses.
- Can incorporate weights, at hypothesis and group level.
- Can incorporate "null-proportion" estimation.
- Can have overlapping groups, incomplete partitions, etc.

Orthogonal Works (in progress):

- Improved algorithms for online FDR.
- Interactive data analysis with FDR control.
${ }^{1}$ Code: http://www.stat.uchicago.edu/~rina/pfilter.html

[^0]: ${ }^{1}$ Code: http://www.stat.uchicago.edu/~rina/pfilter.html

[^1]: ${ }^{1}$ Code: http://www.stat.uchicago.edu/~rina/pfilter.html

[^2]: ${ }^{1}$ Code: http://www.stat.uchicago.edu/~rina/pfilter.html

