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Multiple comparisons & FDR control

Central Question:

When testing n different null hypotheses simultaneously, how do

we determine which effects are significant? and take prior

structural knowledge into account while doing this?

(selective inference with structure)
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Example

True signals p−filter

BB BH
Data: Zi ∼ N (µ, 1), Pi = 1− Φ(Zi) for 1000 hypotheses.

10× 100 grid : µ > 0 for 100 pixels, µ = 0 for 900 pixels.

True signals have “small” p-values. Nulls have uniform p-values.
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Example
True signals p−filter

BB BH

Benjamini Hochberg with entry-level target FDR = 0.2.
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Example

True signals p−filter

BB BH
p-Filter with entry-level and column-level target FDR = 0.2
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Multiple comparisons & FDR control

How can we incorporate additional information into the procedure?

• If the hypotheses have a natural clustered / hierarchical structure,

how can we take this into account?

• You may want to group together hypotheses that are likely to be

null together or be non-null together.

• In spatio-temporal applications, it might be natural to group

hypotheses by space or time or space-time blocks. “Discovery at

time/location x makes discoveries around x more likely”.

• In genetics, certain genes/proteins might be known to act together,

or have similar molecular structure.

• We might have some prior guess about which hypotheses are more

likely to be null or non-null.
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Goal (in English)

• Given n hypotheses with p-values P := {P1, . . . , Pn}

Eg: Imagine they are placed in a r × c grid, n = rc.

• Given M partitions (disjoint subsets of P , whose union is P )

Partition 1 could be the set of all singletons,

Partition 2 could be the set of all rows, and

Partition 3 could be the set of all columns.

• Goal: select set Ŝ ⊆ [n] such that FDR is bounded

simultaneously for partition 1, 2, . . . ,M .
Few falsely discovered singletons,

Few falsely discovered rows,

Few falsely discovered columns.

p-Filter: will discover Ŝ ⊆ [n] such that FDR is simultaneously

controlled for all partitions.
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Multilayer FDR

αindiv = 0.1

αgroup = 0.2

0.03 0.01 0.18 0.04 0.08

0.05 0.11 0.06 0.01 0.89

0.14 0.12 0.58 0.11 0.11

0.88 0.24 0.09 0.66 0.45

Simes
p−value

Group 1 0.05

Group 2 0.05

Group 3 0.18

Group 4 0.45
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The issue of “internal consistency”

Observe: If we first (somehow) select which groups to reject, and

then naively run BH on hypotheses within those groups, we may

not control FDR at the individual level.

Observe: Even if we corrected for selection, and then run BH, we

may end up with “empty rejected groups” — we may have groups

that were rejected, within which no hypotheses were rejected.

Observe: Alternately, if we first rejected individual hypotheses,

and then rejected all groups in which there was a rejected

hypothesis, it may not control group FDR.

FDR control with “internal consistency”:

Every rejected hypothesis is in some rejected group, and every

rejected group contains at least one rejected hypothesis.
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The p-Filter algorithm

Input: n p-values, M partitions, M FDR levels
Let t1 = α1, . . . , tM = αM . Repeat m = 1, . . . ,M , until no change:

• For the mth partition, Simes+thresholding

— Calculate Simes p-values Pm := {Pm
1 , . . . , P

m
G }

— Reject all groups whose Pm
g ≤ tm.

• Ŝ := {Pi : in every partition, Pi’s group was selected}, intersect

Let Ŝm be the discovered groups in partition m, induced by Ŝ.

• Estimate FDP’s for each partition: correction

F̂DPm =
tm ·Gm

|Ŝm|
← approx. # false discoveries

← # discoveries

If F̂DPm > αm, reduce tm until F̂DPm is ≤ αm (discrete search)

Note: Simes and BH are special cases when M = 1.
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• Ŝ := {Pi : in every partition, Pi’s group was selected}, intersect
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p-Filter controls FDR, finds max legal threshold

Theorem 2

p-Filter finds “maximum legal threshold”, and it controls FDR

simultaneously ∀m:

FDR for partition m = E

[
|H0

m ∩ Ŝm|
|Ŝm|

]
≤ αm ·

|H0
m|

Gm
∀ m.

Furthermore, it halts in G1 +G2 + ...+GM + 1 outer loops.

Does not depend on order of specifying partitions.
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Simulation results

True signals p−filter BB BH

p-Filter: entries + rows + columns (3 partitions)

BB: entries + rows (2 partitions, constrained to be hierarchical)

BH: entries only

Target FDR: αentries = αrows = αcolumns = 0.2
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A neuroscience example

• 8 subjects read Chapter 9 of Harry Potter, 1 word = 0.5 sec.

• fMRI recording: 40,000 voxels, 1 scan = 2 sec.

• Consider semantic features of the text (NLP techniques).

• Try to find dependence between text presented at time t with

voxel activity at time t+ δ, for delay δ = 0, 2, 4, 6, 8 sec.

• One p-value per voxel, per delay δ.

• Can group by space, time or space-time blocks.
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Big Picture1

Summary:

• m = 1: p-Filter is a strict generalization of BH and Simes.

• m > 1: p-Filter controls FDR simultaneously for all partitions.

• Flexibly allows the user to incorporate prior information, resulting in

higher precision of the rejected hypotheses.

• Can incorporate weights, at hypothesis and group level.

• Can incorporate “null-proportion” estimation.

• Can have overlapping groups, incomplete partitions, etc.

Orthogonal Works (in progress):

• Improved algorithms for online FDR.

• Interactive data analysis with FDR control.

1Code: http://www.stat.uchicago.edu/~rina/pfilter.html
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Big Picture1

Summary:

• m = 1: p-Filter is a strict generalization of BH and Simes.

• m > 1: p-Filter controls FDR simultaneously for all partitions.

• Flexibly allows the user to incorporate prior information, resulting in

higher precision of the rejected hypotheses.

• Can incorporate weights, at hypothesis and group level.

• Can incorporate “null-proportion” estimation.

• Can have overlapping groups, incomplete partitions, etc.

Orthogonal Works (in progress):

• Improved algorithms for online FDR.

• Interactive data analysis with FDR control.
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