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Example
True signals

Data: Z;, ~ N(p,1), P, =1 — ®(Z;) for 1000 hypotheses.

10 x 100 grid : p > 0 for 100 pixels, @ = 0 for 900 pixels.

True signals have “small” p-values. Nulls have uniform p-values.
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Benjamini Hochberg with entry-level target FDR = 0.2.
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p-filter

p-Filter with entry-level and column-level target FDR = 0.2

3/12



Multiple comparisons & FDR control

How can we incorporate additional information into the procedure?

4/12



Multiple comparisons & FDR control

How can we incorporate additional information into the procedure?

e |f the hypotheses have a natural clustered / hierarchical structure,
how can we take this into account?

4/12



Multiple comparisons & FDR control

How can we incorporate additional information into the procedure?

e |f the hypotheses have a natural clustered / hierarchical structure,

how can we take this into account?

e You may want to group together hypotheses that are likely to be

null together or be non-null together.

4/12



Multiple comparisons & FDR control

How can we incorporate additional information into the procedure?

e |f the hypotheses have a natural clustered / hierarchical structure,
how can we take this into account?

e You may want to group together hypotheses that are likely to be
null together or be non-null together.

e |n spatio-temporal applications, it might be natural to group
hypotheses by space or time or space-time blocks. “Discovery at
time/location « makes discoveries around  more likely” .

4/12



Multiple comparisons & FDR control

How can we incorporate additional information into the procedure?

e |f the hypotheses have a natural clustered / hierarchical structure,
how can we take this into account?

e You may want to group together hypotheses that are likely to be
null together or be non-null together.

e |n spatio-temporal applications, it might be natural to group
hypotheses by space or time or space-time blocks. “Discovery at
time/location « makes discoveries around  more likely” .

e In genetics, certain genes/proteins might be known to act together,
or have similar molecular structure.

e We might have some prior guess about which hypotheses are more
likely to be null or non-null.

4/12



Goal (in English)

e Given n hypotheses with p-values P := {P},..., P}

5/12



Goal (in English)

e Given n hypotheses with p-values P := {P},..., P}

Eg: Imagine they are placed in a r X ¢ grid, n = rc.

5/12



Goal (in English)

e Given n hypotheses with p-values P := {P},..., P}
Eg: Imagine they are placed in a r X ¢ grid, n = rc.

e Given M partitions (disjoint subsets of P, whose union is P)

5/12



Goal (in English)

e Given n hypotheses with p-values P := {P},..., P}
Eg: Imagine they are placed in a r X ¢ grid, n = rc.

e Given M partitions (disjoint subsets of P, whose union is P)
Partition 1 could be the set of all singletons,
Partition 2 could be the set of all rows, and
Partition 3 could be the set of all columns.

5/12
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e Given n hypotheses with p-values P := {P},..., P}
Eg: Imagine they are placed in a r X ¢ grid, n = rc.

e Given M partitions (disjoint subsets of P, whose union is P)
Partition 1 could be the set of all singletons,

Partition 2 could be the set of all rows, and
Partition 3 could be the set of all columns.

e Goal: select set S C [n] such that FDR is bounded

simultaneously for partition 1,2,..., M.
Few falsely discovered singletons,

Few falsely discovered rows,

Few falsely discovered columns.

p-Filter: will discover S C [n] such that FDR is simultaneously
controlled for all partitions.
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The issue of “internal consistency”

Observe: If we first (somehow) select which groups to reject, and
then naively run BH on hypotheses within those groups, we may
not control FDR at the individual level.
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Observe: If we first (somehow) select which groups to reject, and
then naively run BH on hypotheses within those groups, we may
not control FDR at the individual level.

Observe: Even if we corrected for selection, and then run BH, we
may end up with “empty rejected groups” — we may have groups
that were rejected, within which no hypotheses were rejected.
Observe: Alternately, if we first rejected individual hypotheses,
and then rejected all groups in which there was a rejected
hypothesis, it may not control group FDR.

FDR control with “internal consistency”:
Every rejected hypothesis is in some rejected group, and every
rejected group contains at least one rejected hypothesis.
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Let ty = aq,...,tpr = apy. Repeat m = 1,..., M, until no change:

e For the mth partition, Simes+thresholding

— Calculate Simes p-values P := {P[",..., P&}
— Reject all groups whose P < t,,.

o 5= {P; : in every partition, P;'s group was selected}, intersect

Let §m be the discovered groups in partition m, induced by S.

e Estimate FDP's for each partition: correction

FDP,, = tm - G, < approx. # false discoveries
" |§m| — # discoveries

If F/I:)\I:’m >y, reduce ¢, until F/D\Pm is < a,,, (discrete search)

Note: Simes and BH are special cases when M = 1. 8/12



p-Filter controls FDR, finds max legal threshold

Theorem 2

p-Filter finds “maximum legal threshold”, and it controls FDR
simultaneously Vm:

FDR for partition m = E

Furthermore, it halts in G1 + G2 + ... + Gy + 1 outer loops.
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p-Filter controls FDR, finds max legal threshold

Theorem 2
p-Filter finds “maximum legal threshold”, and it controls FDR

simultaneously Vm:

FDR for partition m = E

Furthermore, it halts in G1 + G2 + ... + Gy + 1 outer loops.

Does not depend on order of specifying partitions.
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Simulation results

By entry
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Simulation results

By row
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Simulation results

By column
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Simulation results

By entry
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A neuroscience example

8 subjects read Chapter 9 of Harry Potter, 1 word = 0.5 sec.
fMRI recording: 40,000 voxels, 1 scan = 2 sec.

Consider semantic features of the text (NLP techniques).

Try to find dependence between text presented at time ¢ with
voxel activity at time ¢ 4 9, for delay § = 0,2,4,6, 8 sec.

One p-value per voxel, per delay §.

Can group by space, time or space-time blocks.
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Big Picture!

Summary:

e m = 1. p-Filter is a strict generalization of BH and Simes.
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Big Picture!

Summary:

e m = 1. p-Filter is a strict generalization of BH and Simes.

m > 1. p-Filter controls FDR simultaneously for all partitions.

Flexibly allows the user to incorporate prior information, resulting in
higher precision of the rejected hypotheses.

e Can incorporate weights, at hypothesis and group level.

Can incorporate “null-proportion” estimation.

e Can have overlapping groups, incomplete partitions, etc.
Orthogonal Works (in progress):

e Improved algorithms for online FDR.

e Interactive data analysis with FDR control.
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