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Setting: regression model selection

Linear model
y=XpB+e

@ y vector of outcomes

e X predictor/feature matrix

@ (3 parameters/weights to be estimated, assume most are “null,”
i.e. equal O (sparsity)

@ ¢ random errors, assume probability distribution N (0, o21)

@ Pick subset of predictors we think are non-null

@ How good is the model using this subset?

@ Are chosen predictors actually non-null, i.e. significant?

Type 1 error: declaring a predictor significant when it is actually null.
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Motivating example: forward stepwise

Data: California county health data. . .
Outcome: log-years of potential life lost.
Model: 5 out of 30 predictors chosen by FS with AIC.

model <- step(lm(y ~ .-1, df), k = 2, trace = 0)
print (summary (model)$coefficients[,c(1,4)], digits = 2)

it Estimate Pr(>|tl)
## Food.Environment.Index 0.342 0.0296
## Y .With.Access’ -0.036 0.0017
## ', .Excessive.Drinking’ 0.090 0.0182
## Teen.Birth.Rate 0.026 0.0045
## Average.Daily.PM2.5 -0.225  0.0211

5 interesting effects, all significant. Time to publish!
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What's wrong with this?

The outcome was actually just noise, independent of the
predictors

set.seed (1)
df = read.csv("CaliforniaCountyHealth.csv")

df$y <- rnorm(nrow(df)) #!!!

(With apologies for deceiving you, | hope this makes the point. . .)
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Selection can make noise look like signal

Any time we use the data to make a decision (e.g. pick one model
instead of some others), we may introduce a selection effect (bias).

This happens with forward stepwise, Lasso, elastic net with
cross-validation, etc.

Significance tests, prediction error, R?, goodness of fit tests, etc, can
all suffer from this selection bias
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Most common solution: data splitting

Pros:

@ Simple: only takes a few lines of code
@ Robust: requires few assumptions
o Controls (selective) type 1 error, no selection bias

Cons:

@ Reproducibility issues: different random splits, different split
proportions

o Efficiency: using less data for model selection, also less power

o Feasibility: categorical variables with rare levels (e.g. rare variants)
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Literature on (conditional) post-selection inference

@ Frequentist interpretation Hurvich & Tsai (1990)

@ Lasso, sequential Lockhart et al. (2014)

@ General penalty, global null, geometry Taylor, Loftus, and
Tibshirani (2015), Azais, Castro, and Mourareau (2015)

o Forward stepwise, sequential Loftus and Taylor (2014)

@ Fixed X Lasso / conditional Lee et al. (2015), Fithian, Sun, and
Taylor (2014)

@ Forward stepwise and LAR Tibshirani et al. (2014)

@ Asymptotics Tian and Taylor (2015a)

e Unknown o Tian, Loftus, and Taylor (2015), Gross, Taylor, and
Tibshirani (2015)

@ Group selection / unknown o Loftus and Taylor (2015)
@ Cross-validation Tian and Taylor (2015b), Loftus (2015)
@ Unsupervised learning Blier, Loftus, and Taylor (2016)

(Incomplete list, growing fast)
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Previous work: affine model selection

@ Model selection map M : R® — M, with M space of potential
models.

@ Observe E,, = {M(y) = m}, want to condition on this event.

@ For many model selection procedures (e.g. Lasso at fixed \)

L(y|M(y) =m) = L(y| A(m)y < b(m)) on {M(y) =m}

what we want simple geometry

MVN constrained to a polytope.
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Quadratic model selection framework

For some model selection procedures (e.g. forward stepwise with
groups, cross-validation), model selection event can be decomposed as

Quadratic selection event
En={M@y)=m}= ({y:y"Qu+a y+b; >0}

J€Jm

@ These (), a,b are constant on F,,, so conditionally they are
constants

@ For conditional inference, need to compute this intersection of
quadratics
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Truncated  significance test

Suppose y ~ N(p,02I) with o2 known, Hy(m) : P =0, Py, is

constant on {M(y) = m}, r:=Tr(P,), R := P,y, u:= R/||R||2,
z:=y—R, Dy, :={t >0: M(uto + z) =m}, and the observed

statistic 7' = || R||2/0

Post-selection Ty distribution

Tl(maz7u) ~ XT‘Dm (1)

where the vertical bar denotes truncation. Hence, with f,. the pdf of a
central x, random variable

_ I pnimoe fr(t)dt
. fDm fr(t)dt

is a p-value controlling selective type 1 error.

Tx

~ U[0,1] (2)
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Geometry problem: intersection of quadratic
regions

Figure 1: The complement of each quadratic is shaded with a different color. The
unshaded, white region is E,,.
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Adaptive model selection with cross-validation

e For K-fold cv, data partitioned (randomly) into Dy, ..., Dg. For
each £k =1,..., K, hold out Dy as a test set while training a
model on the other K — 1 folds. Form estimate RSS;, of
out-of-sample prediction error. Average these estimates over test
folds.

@ Use to choose model complexity: evaluate RSS) s for various
sparsity choices s. Pick s minimizing the cv-RSS estimate.

@ Run forward stepwise with maxsteps S. For s = 1,...,S evaluate
the test error RSSk ;. Average to get RSS;. Pick s* minimizing
this. Run forward stepwise on the whole data for s* steps.

Can we do selective inference for the final models chosen this way?
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Notation for cross-validation

o Let f, g index CV test folds.

@ On fold f, model my at step s, and — f denoting the training set
for test fold f (complement of f).

e Define Py := X/ (X7 )T (not a projection)

mg,s my,s
. K _

o s=argmin, ;- [ly/ — Proy /|3

@ Sums of squares. .. maybe it's a quadratic form?
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Blockwise quadratic form of cv-RSS

Key result of Loftus (2015).
Define Q% := 21 (Py.s)} (Pys)s and

K
Qg = —(Prs)g — (Pg,s)? + Z (Phas)?(ths)g

Then with yx denoting the observations ordered by CV-folds,

cv-RSS(s) = y}r{stK

This quadratic form allows us to conduct inference conditional on

models selected by cross-validation
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Empirical CDF: forward stepwise simulation

n =100, p = 200, K =5, sparsity = 5, betas = 1
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Empirical CDF: LAR simulation

n =50, p=100, K =5, sparsity =5
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Remarks

Technical details in the papers, a few notes:

Tests not independent

Computationally expensive

May be low powered against some alternatives

Can also do o2 unknown case

@ Most usual limitations of model selection still apply

Software implementation: selectiveInference R package on CRAN
Github repo: https://github.com/selective-inference/
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Thanks for your attention!

Questions?
jloftus@turing.ac.uk
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