Significance testing after cross-validation

The Alan Turing Institute

Joshua Loftus (jloftus@turing.ac.uk) (building from joint work with Jonathan Taylor) 9 December, 2016
Slides and markdown source at https://joftius.github.io/turing

Setting: regression model selection

Linear model

$$y = X\beta + \epsilon$$

- y vector of outcomes
- X predictor/feature matrix
- β parameters/weights to be estimated, assume most are "null," i.e. equal 0 (sparsity)
- ullet random errors, assume probability distribution $N(0,\sigma^2I)$
- Pick subset of predictors we think are non-null
- How good is the model using this subset?
- Are chosen predictors actually non-null, i.e. significant?

Type 1 error: declaring a predictor significant when it is actually null.

Motivating example: forward stepwise

Data: California county health data...

Outcome: log-years of potential life lost.

Model: 5 out of 30 predictors chosen by FS with AIC.

```
model <- step(lm(y ~ .-1, df), k = 2, trace = 0)
print(summary(model)$coefficients[,c(1,4)], digits = 2)</pre>
```

```
## Food.Environment.Index 0.342 0.0296
## `%.With.Access` -0.036 0.0017
## `%.Excessive.Drinking` 0.090 0.0182
## Teen.Birth.Rate 0.026 0.0045
## Average.Daily.PM2.5 -0.225 0.0211
```

5 interesting effects, all significant. Time to publish!

What's wrong with this?

The outcome was actually just noise, independent of the predictors

```
set.seed(1)
df = read.csv("CaliforniaCountyHealth.csv")
df$y <- rnorm(nrow(df)) #!!!</pre>
```

(With apologies for deceiving you, I hope this makes the point...)

Selection can make noise look like signal

Any time we use the data to make a decision (e.g. pick one model instead of some others), we may introduce a selection effect (bias).

This happens with forward stepwise, Lasso, elastic net with cross-validation, etc.

Significance tests, prediction error, ${\cal R}^2$, goodness of fit tests, etc, can all suffer from this selection bias

Most common solution: data splitting

Pros:

- Simple: only takes a few lines of code
- Robust: requires few assumptions
- Controls (selective) type 1 error, no selection bias

Cons:

- Reproducibility issues: different random splits, different split proportions
- Efficiency: using less data for model selection, also less power
- Feasibility: categorical variables with rare levels (e.g. rare variants)

Literature on (conditional) post-selection inference

• Frequentist interpretation Hurvich & Tsai (1990)

• Lasso, sequential Lockhart et al. (2014)

 General penalty, global null, geometry Taylor, Loftus, and Tibshirani (2015), Azaïs, Castro, and Mourareau (2015)

• Forward stepwise, sequential Loftus and Taylor (2014)

 \bullet Fixed λ Lasso / conditional Lee et al. (2015), Fithian, Sun, and Taylor (2014)

• Forward stepwise and LAR Tibshirani et al. (2014)

• Asymptotics Tian and Taylor (2015a)

 \bullet Unknown σ Tian, Loftus, and Taylor (2015), Gross, Taylor, and Tibshirani (2015)

ullet Group selection / unknown σ Loftus and Taylor (2015)

• Cross-validation Tian and Taylor (2015b), Loftus (2015)

• Unsupervised learning Blier, Loftus, and Taylor (2016)

(Incomplete list, growing fast)

Previous work: affine model selection

- Model selection map $M: \mathbb{R}^n \to \mathcal{M}$, with \mathcal{M} space of potential models.
- Observe $E_m = \{M(y) = m\}$, want to condition on this event.
- ullet For many model selection procedures (e.g. Lasso at fixed λ)

$$\underbrace{\mathcal{L}(y|M(y)=m)}_{\text{what we want}} = \mathcal{L}(y|\underbrace{A(m)y \leq b(m)}_{\text{simple geometry}}) \quad \text{on } \{M(y)=m\}$$

MVN constrained to a polytope.

Quadratic model selection framework

For some model selection procedures (e.g. forward stepwise with groups, cross-validation), model selection event can be decomposed as

Quadratic selection event

$$E_m := \{ M(y) = m \} = \bigcap_{j \in J_m} \{ y : y^T Q_j y + a_j^T y + b_j \ge 0 \}$$

- These Q, a, b are constant on E_m , so conditionally they are constants
- For conditional inference, need to compute this intersection of quadratics

Truncated χ significance test

Suppose $y \sim N(\mu, \sigma^2 I)$ with σ^2 known, $H_0(m): P_m \mu = 0$, P_m is constant on $\{M(y) = m\}$, $r := \operatorname{Tr}(P_m)$, $R := P_m y$, $u := R/\|R\|_2$, z := y - R, $D_m := \{t \geq 0: M(ut\sigma + z) = m\}$, and the observed statistic $T = \|R\|_2/\sigma$

Post-selection $T\chi$ distribution

$$T|(m,z,u) \sim \chi_r|_{D_m} \tag{1}$$

where the vertical bar denotes truncation. Hence, with f_r the pdf of a central χ_r random variable

$$T\chi := \frac{\int_{D_m \cap [T,\infty]} f_r(t)dt}{\int_{D_m} f_r(t)dt} \sim U[0,1]$$
 (2)

is a p-value controlling selective type 1 error.

Figure 1: The *complement* of each quadratic is shaded with a different color. The unshaded, white region is E_m .

Figure 1: The *complement* of each quadratic is shaded with a different color. The unshaded, white region is E_m .

Figure 1: The *complement* of each quadratic is shaded with a different color. The unshaded, white region is E_m .

Figure 1: The *complement* of each quadratic is shaded with a different color. The unshaded, white region is E_m .

Adaptive model selection with cross-validation

- For K-fold cv, data partitioned (randomly) into D_1, \ldots, D_K . For each $k=1,\ldots,K$, hold out D_k as a test set while training a model on the other K-1 folds. Form estimate RSS_k of out-of-sample prediction error. Average these estimates over test folds.
- Use to choose model complexity: evaluate $RSS_{k,s}$ for various sparsity choices s. Pick s minimizing the cv-RSS estimate.
- Run forward stepwise with maxsteps S. For $s=1,\ldots,S$ evaluate the test error $RSS_{k,s}$. Average to get RSS_s . Pick s^* minimizing this. Run forward stepwise on the whole data for s^* steps.

Can we do selective inference for the final models chosen this way?

Notation for cross-validation

- Let f, g index CV test folds.
- On fold f, model m_f at step s, and -f denoting the training set for test fold f (complement of f).
- Define $P_{f,s}:=X^f_{m_f,s}(X^{-f}_{m_f,s})^{\dagger}$ (not a projection)
- $\bullet \ s = \operatorname{argmin}_s \sum_{f=1}^K \|y^f P_{f,s} y^{-f}\|_2^2$
- Sums of squares... maybe it's a quadratic form?

Blockwise quadratic form of cv-RSS

Key result of Loftus (2015).

Define $Q_{ff}^s := \sum_{g \neq f} (P_{g,s})_f^T (P_{g,s})_f$ and

$$Q_{fg}^s := -(P_{f,s})_g - (P_{g,s})_f^T + \sum_{\substack{h=1\\h\notin\{f,g\}}}^K (P_{h,s})_f^T (P_{h,s})_g^T$$

Then with y_K denoting the observations ordered by CV-folds,

$$cv-RSS(s) = y_K^T Q^s y_K$$

This quadratic form allows us to conduct inference conditional on models selected by cross-validation

Empirical CDF: forward stepwise simulation

Empirical CDF: LAR simulation

Remarks

Technical details in the papers, a few notes:

- Tests not independent
- Computationally expensive
- May be low powered against some alternatives
- ullet Can also do σ^2 unknown case
- Most usual limitations of model selection still apply

Software implementation: selectiveInference R package on CRAN Github repo: https://github.com/selective-inference/

References

- Taylor, Tibshirani (2015). Statistical learning and selective inference. PNAS.
- Benjamini, (2010). Simultaneous and selective inference: current successes and future challenges. Biometrical Journal.
- Berk et al, (2010). Statistical inference after model selection. Journal of Quantitative Criminology.
- Berk et al, (2013). Valid post-selection inference. Annals of Statistics.
- Simon et al, (2011). Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software.
- Loftus, (2015). Selective inference after cross-validation. arXiv Preprint.
- Loftus and Taylor, (2015). Selective inference in regression models with groups of variables. arXiv Preprint.

Thanks for your attention!

Questions?

jloftus@turing.ac.uk

More references

Azaïs, Jean-Marc, Yohann de Castro, and Stéphane Mourareau. 2015. "Power of the Kac-Rice Detection Test." *ArXiv Preprint ArXiv:1503.05093*.

Blier, Léonard, Joshua R. Loftus, and Jonathan E. Taylor. 2016. "Inference on the Number of Clusters in k-Means Clustering." In Progress.

Fithian, William, Dennis Sun, and Jonathan Taylor. 2014. "Optimal Inference After Model Selection." ArXiv Preprint ArXiv:1410.2597. Gross, S. M., J. Taylor, and R. Tibshirani. 2015. "A Selective Approach to Internal Inference." ArXiv E-Prints, October. Lee. Jason D. Dennis L Sun, Yuekai Sun, and Jonathan E Taylor. 2015. "Exact Post-Selection Inference with the Lasso." Ann. Statist. Lockhart, Richard, Jonathan Taylor, Ryan J Tibshirani, and Robert Tibshirani. 2014. "A Significance Test for the Lasso." Annals of Statistics 42 (2). NIH Public Access: 413. Loftus, J. R., and J. E. Taylor. 2015. "Selective inference in regression