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Setting: regression model selection

Linear model
y = Xβ + ε

y vector of outcomes
X predictor/feature matrix
β parameters/weights to be estimated, assume most are “null,”
i.e. equal 0 (sparsity)
ε random errors, assume probability distribution N(0, σ2I)
Pick subset of predictors we think are non-null
How good is the model using this subset?
Are chosen predictors actually non-null, i.e. significant?

Type 1 error: declaring a predictor significant when it is actually null.
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Motivating example: forward stepwise
Data: California county health data. . .
Outcome: log-years of potential life lost.
Model: 5 out of 30 predictors chosen by FS with AIC.

model <- step(lm(y ~ .-1, df), k = 2, trace = 0)
print(summary(model)$coefficients[,c(1,4)], digits = 2)

## Estimate Pr(>|t|)
## Food.Environment.Index 0.342 0.0296
## `%.With.Access` -0.036 0.0017
## `%.Excessive.Drinking` 0.090 0.0182
## Teen.Birth.Rate 0.026 0.0045
## Average.Daily.PM2.5 -0.225 0.0211

5 interesting effects, all significant. Time to publish!
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What’s wrong with this?

The outcome was actually just noise, independent of the
predictors

set.seed(1)
df = read.csv("CaliforniaCountyHealth.csv")
df$y <- rnorm(nrow(df)) #!!!

(With apologies for deceiving you, I hope this makes the point. . . )
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Selection can make noise look like signal

Any time we use the data to make a decision (e.g. pick one model
instead of some others), we may introduce a selection effect (bias).

This happens with forward stepwise, Lasso, elastic net with
cross-validation, etc.

Significance tests, prediction error, R2, goodness of fit tests, etc, can
all suffer from this selection bias
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Most common solution: data splitting

Pros:
Simple: only takes a few lines of code
Robust: requires few assumptions
Controls (selective) type 1 error, no selection bias

Cons:
Reproducibility issues: different random splits, different split
proportions
Efficiency: using less data for model selection, also less power
Feasibility: categorical variables with rare levels (e.g. rare variants)
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Literature on (conditional) post-selection inference
Frequentist interpretation Hurvich & Tsai (1990)
Lasso, sequential Lockhart et al. (2014)
General penalty, global null, geometry Taylor, Loftus, and
Tibshirani (2015), Azaïs, Castro, and Mourareau (2015)
Forward stepwise, sequential Loftus and Taylor (2014)
Fixed λ Lasso / conditional Lee et al. (2015), Fithian, Sun, and
Taylor (2014)
Forward stepwise and LAR Tibshirani et al. (2014)
Asymptotics Tian and Taylor (2015a)
Unknown σ Tian, Loftus, and Taylor (2015), Gross, Taylor, and
Tibshirani (2015)
Group selection / unknown σ Loftus and Taylor (2015)
Cross-validation Tian and Taylor (2015b), Loftus (2015)
Unsupervised learning Blier, Loftus, and Taylor (2016)

(Incomplete list, growing fast)
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Previous work: affine model selection

Model selection map M : Rn →M, withM space of potential
models.
Observe Em = {M(y) = m}, want to condition on this event.
For many model selection procedures (e.g. Lasso at fixed λ)

L(y|M(y) = m)︸ ︷︷ ︸
what we want

= L(y|A(m)y ≤ b(m)︸ ︷︷ ︸
simple geometry

) on {M(y) = m}

MVN constrained to a polytope.
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Quadratic model selection framework

For some model selection procedures (e.g. forward stepwise with
groups, cross-validation), model selection event can be decomposed as

Quadratic selection event
Em := {M(y) = m} =

⋂
j∈Jm

{y : yTQjy + aT
j y + bj ≥ 0}

These Q, a, b are constant on Em, so conditionally they are
constants
For conditional inference, need to compute this intersection of
quadratics
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Truncated χ significance test
Suppose y ∼ N(µ, σ2I) with σ2 known, H0(m) : Pmµ = 0, Pm is
constant on {M(y) = m}, r := Tr(Pm), R := Pmy, u := R/‖R‖2,
z := y −R, Dm := {t ≥ 0 : M(utσ + z) = m}, and the observed
statistic T = ‖R‖2/σ

Post-selection Tχ distribution
T |(m, z, u) ∼ χr|Dm

(1)

where the vertical bar denotes truncation. Hence, with fr the pdf of a
central χr random variable

Tχ :=
∫

Dm∩[T,∞] fr(t)dt∫
Dm

fr(t)dt
∼ U [0, 1] (2)

is a p-value controlling selective type 1 error.
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Geometry problem: intersection of quadratic
regions

y

Figure 1: The complement of each quadratic is shaded with a different color. The
unshaded, white region is Em.
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Adaptive model selection with cross-validation

For K-fold cv, data partitioned (randomly) into D1, . . . , DK . For
each k = 1, . . . , K, hold out Dk as a test set while training a
model on the other K − 1 folds. Form estimate RSSk of
out-of-sample prediction error. Average these estimates over test
folds.
Use to choose model complexity: evaluate RSSk,s for various
sparsity choices s. Pick s minimizing the cv-RSS estimate.
Run forward stepwise with maxsteps S. For s = 1, . . . , S evaluate
the test error RSSk,s. Average to get RSSs. Pick s∗ minimizing
this. Run forward stepwise on the whole data for s∗ steps.

Can we do selective inference for the final models chosen this way?
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Notation for cross-validation

Let f, g index CV test folds.
On fold f , model mf at step s, and −f denoting the training set
for test fold f (complement of f).
Define Pf,s := Xf

mf ,s(X−f
mf ,s)† (not a projection)

s = argmins

∑K
f=1 ‖yf − Pf,sy

−f‖2
2

Sums of squares. . . maybe it’s a quadratic form?
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Blockwise quadratic form of cv-RSS

Key result of Loftus (2015).
Define Qs

ff := ∑
g 6=f (Pg,s)T

f (Pg,s)f and

Qs
fg := −(Pf,s)g − (Pg,s)T

f +
K∑

h=1
h/∈{f,g}

(Ph,s)T
f (Ph,s)T

g

Then with yK denoting the observations ordered by CV-folds,

cv-RSS(s) = yT
KQ

syK

This quadratic form allows us to conduct inference conditional on
models selected by cross-validation
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Empirical CDF: forward stepwise simulation
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Empirical CDF: LAR simulation
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Remarks

Technical details in the papers, a few notes:
Tests not independent
Computationally expensive
May be low powered against some alternatives
Can also do σ2 unknown case
Most usual limitations of model selection still apply

Software implementation: selectiveInference R package on CRAN
Github repo: https://github.com/selective-inference/
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Thanks for your attention!

Questions?
jloftus@turing.ac.uk
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