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Problem Statement

Controlled Variable Selection

Given:

Y an outcome of interest (AKA response or dependent variable),

X1, . . . , Xp a set of p potential explanatory variables (AKA covariates,
features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

Medicine/genetics/health care

Economics/political science

Industry/technology
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Controlled Variable Selection

What is an important variable?

We consider Xj to be unimportant if the conditional distribution of Y given
X1, . . . , Xp does not depend on Xj . Formally, Xj is unimportant if it is
conditionally independent of Y given X-j :

Y ⊥⊥ Xj |X-j

Markov Blanket of Y : smallest set S such that Y ⊥⊥ X-S |XS

To make sure we do not make too many mistakes, we seek to select a set Ŝ to
control the false discovery rate (FDR):

FDR(Ŝ) = E
(
#{j in Ŝ : Xj unimportant}

#{j in Ŝ}

)
≤ q (e.g. 10%)

“Here is a set of variables Ŝ, 90% of which I expect to be important”
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“Here is a set of variables Ŝ, 90% of which I expect to be important”

Lucas Janson, Stanford Department of Statistics Knockoffs for Controlled Variable Selection 2 / 11



Controlled Variable Selection

What is an important variable?

We consider Xj to be unimportant if the conditional distribution of Y given
X1, . . . , Xp does not depend on Xj . Formally, Xj is unimportant if it is
conditionally independent of Y given X-j :

Y ⊥⊥ Xj |X-j

Markov Blanket of Y : smallest set S such that Y ⊥⊥ X-S |XS

To make sure we do not make too many mistakes, we seek to select a set Ŝ to
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Sneak Peak

Model-free knockoffs solves the controlled variable selection problem

Any model for Y and X1, . . . , Xp

Any dimension (including p > n)

Finite-sample control (non-asymptotic) of FDR

Practical performance on real problems

Application: the Genetic Basis of Crohn’s Disease (WTCCC, 2007)

≈ 5, 000 subjects (≈ 40% with Crohn’s Disease)

≈ 375, 000 single nucleotide polymorphisms (SNPs) for each subject

The original analysis of the data made 9 discoveries by running marginal tests of
association on each SNP and applying a p-value cutoff corresponding (by a
Bayesian argument, under assumptions) to a FDR of 10%

Model-free knockoffs used the same FDR of 10% and made 18 discoveries, with
many of the new discoveries confirmed by a larger meta-analysis
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Methods for Controlled Variable Selection

What is required for valid inference?

Low
dimensions

Model for
Y

Asymptopic
regime Sparsity

Random
design

OLSp+BHq Yes Yes No No No

MLp+BHq Yes Yes Yes No No

HDp+BHq No Yes Yes Yes Yes

Orig KnO Yes Yes No No No

MF KnO No No No No Yes*
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The Knockoffs Framework

The generic knockoffs procedure for controlling the FDR at level q:

(1) Construct knockoffs:

Artificial versions (“knockoffs”) of each variable
Act as controls for assessing importance of original variables

(2) Compute knockoff statistics:

Scalar statistic Wj for each variable
Measures how much more important a variable appears than its knockoff
Positive Wj denotes original more important, strength measured by magnitude

(3) Find the knockoff threshold:

Order the variables by decreasing |Wj |
Going down the list, select variables with positive Wj

Stop at last time the ratio of negatives to positives is below q

Coin-flipping property: The key to the knockoffs procedure is that steps (1) and
(2) are done specifically to ensure that, conditional on |W1|, . . . , |Wp|, the signs of
the unimportant/null Wj are independently ±1 with probability 1/2
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The Model-Free Knockoffs Procedure

The model-free knockoffs procedure for controlling the FDR at level q:

(1) Construct knockoffs: Exchangeability

[X1 · · ·Xj · · ·Xp X̃1 · · · X̃j · · · X̃p]
D
= [X1 · · · X̃j · · ·Xp X̃1 · · ·Xj · · · X̃p]

(requires joint distribution of X1, . . . , Xp known)

(2) Compute knockoff statistics:

Variable importance measure Z
Antisymmetric function fj : R2 → R, i.e.,

fj(z1, z2) = −fj(z2, z1)

Wj = fj(Zj , Z̃j), where Zj and Z̃j are the variable importances of Xj and
X̃j , respectively

(3) Find the knockoff threshold: just requires coin-flipping property
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Known Covariate Distribution

Model-free knockoffs surprisingly robust to overfitting

Reasonable approximation when:

1. Subjects sampled from a population, and

2a. Xj highly structured, well-studied, or well-understood, OR

2b. Large set of unsupervised X data (without Y ’s)

For instance, many genome-wide association studies satisfy all conditions:

1. Subjects sampled from a population (oversampling cases still valid)

2a. Strong spatial structure: linkage disequilibrium models, e.g., Markov chains,
are well-studied and work well

2b. Other studies have collected same or similar SNP arrays on different subjects
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Knockoff Construction

Valid model-free knockoff variables can always be generated:

Algorithm 1 Sequential Conditional Independent Pairs

for j = {1, . . . , p} do
Sample X̃j from L(Xj |X-j , X̃1:j−1)

end

If (X1, . . . , Xp) multivariate Gaussian, exchangeability reduces to matching first

and second moments when Xj , X̃j swapped

For Cov(X1, . . . , Xp) = Σ:

Cov(X1, . . . , Xp, X̃1, . . . , X̃p) =

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]
In non-Gaussian case, can be thought of as second-order-correct model-free
knockoffs
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Exchangeability Endows Coin-Flipping

Recall exchangeability property:

[X1 · · ·Xj · · ·Xp X̃1 · · · X̃j · · · X̃p]

D
= [X1 · · · X̃j · · ·Xp X̃1 · · ·Xj · · · X̃p]

for any j

Coin-flipping property for Wj : for any unimportant variable j,(
Zj(y, [X1 · ·Xj · ·Xp X̃1 · ·X̃j · ·X̃p]), Z̃j(y, [X1 · ·Xj · ·Xp X̃1 · ·X̃j · ·X̃p])

)
D
=
(
Zj(y, [X1 · ·X̃j · ·Xp X̃1 · ·Xj · ·X̃p]), Z̃j(y, [X1 · ·X̃j · ·Xp X̃1 · ·Xj · ·X̃p])

)
=
(
Z̃j(y, [X1 · ·Xj · ·Xp X̃1 · ·X̃j · ·X̃p]), Zj(y, [X1 · ·Xj · ·Xp X̃1 · ·X̃j · ·X̃p])

)
Wj = fj(Zj , Z̃j)

D
= fj(Z̃j , Zj) = −fj(Zj , Z̃j) = −Wj
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Adaptivity and Prior Information in Wj

Lasso Coefficient Difference (LCD): `1-penalized regression of y on [X X̃]

Wj = |βj | − |β̃j |

Adaptivity

Cross-validation (on [X X̃]) to choose the penalty parameter in the lasso

Higher-level adaptivity: CV to choose best-fitting model for inference

Fit random forest and `1-penalized regression; derive feature importance from
whichever has lower CV error—still strict FDR control

Prior information

Bayesian approach: choose prior and model, and Zj could be the posterior
probability that Xj contributes to the model

Still strict FDR control, even if wrong prior or MCMC has not converged
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Summary and Next Steps

Summary

The controlled variable selection problem arises in many important modern
statistical applications, but remained unsolved in all but the simplest settings

Model-free knockoffs is a powerful, adaptive, and robust solution whenever
there is considerable outside information on the covariate distribution, which
includes some of the most pressing applications such as GWAS

Next steps

Theoretical: rigorous results on robustness

Applied: domain-specific knockoff constructions and knockoff statistics for
interesting applications, e.g., gene knockout/knockdown

Thank you!
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Original Knockoffs (Barber and Candès, 2015)

y and Xj are n× 1 column vectors of data: n draws from the random variables
Y and Xj , respectively; design matrix X := [X1 · · ·Xp]

(1) Construct knockoffs: Knockoffs X̃j must satisfy, (X̃ := [X̃1 · · · X̃p])

[X X̃]>[X X̃] =

[
X>X X>X − diag{s}

X>X − diag{s} X>X

]
(2) Compute knockoff statistics:

Sufficiency: Wj only a function of [X X̃]>[X X̃] and [X X̃]>y
Antisymmetry: swapping values of Xj and X̃j flips sign of Wj

Comments:

Finite-sample FDR control (non-asymptotic)

Sparsity-based Wj for greater power than OLS+BHq

Requires data follow Gaussian linear model

Can only be run in low dimensions (n ≥ p)

Sufficiency requirement restricts choice of Wj , limiting power/adaptivity
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Robustness Simulations
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Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n = 800, p = 1500,
and target FDR is 10%. Y comes from a binomial linear model with logit link function
with 50 nonzero entries.
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Robustness on Real Data
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Figure: Power and FDR (target is 10%) for model-free knockoffs applied to subsamples
of a real genetic design matrix. n ≈ 1, 400, p ≈ 70, 000, and each boxplot represents 10
different logistic regression models with 60 nonzero coefficients, while each sample in
each boxplot is an average over 10 design matrices drawn from actual SNP data.
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Genetic Analysis of Crohn’s Disease

2007 case-control study of Crohn’s disease by WTCCC; n ≈ 5, 000,
p ≈ 375, 000, preprocessing mirrored original analysis

Strong spatial structure: second-order approximate SDP knockoffs on
covariance estimate of Wen and Stephens (2010) which shrinks off-diagonal
entries of empirical covariance using HapMap spatial structure

Nearby SNPs had very high correlations: affects power

SNPs clustered into groups of average size ≈ 5; each group represented by a
single SNP chosen by t-test on a held-out subset of data: p −→ 70, 000

Checked robustness by running entire procedure on repeated subsamples of
larger design matrix, with simulated response

Model-free knockoffs makes twice as many discoveries as original analysis

Some new discoveries confirmed in larger study
Some corroborated by work on nearby genes: promising candidates
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Simulations in Low-Dimensional Linear Model
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Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures.
The design matrix is i.i.d. N (0, 1/n), n = 3000, p = 1000, and y comes from a Gaussian
linear model with 60 nonzero regression coefficients having equal magnitudes and
random signs. The noise variance is 1.
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Simulations in Low-Dimensional Nonlinear Model
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Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures.
The design matrix is i.i.d. N (0, 1/n), n = 3000, p = 1000, and y comes from a binomial
linear model with logit link function, and 60 nonzero regression coefficients having equal
magnitudes and random signs.
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Simulations in High Dimensions
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Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures.
The design matrix is i.i.d. N (0, 1/n), n = 3000, p = 6000, and y comes from a binomial
linear model with logit link function, and 60 nonzero regression coefficients having equal
magnitudes and random signs.

Lucas Janson, Stanford Department of Statistics Knockoffs for Controlled Variable Selection 11 / 11



Simulations in High Dimensions with Dependence
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Figure: Power and FDR (target is 10%) for MF knockoffs and alternative procedures.
The design matrix has AR(1) columns, and marginally each Xj ∼ N (0, 1/n). n = 3000,
p = 6000, and y follows a binomial linear model with logit link function, and 60 nonzero
coefficients with random signs and randomly selected locations.
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