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The multiple comparisons problem

A family of m null hypotheses are considered: H1, . . . ,Hm .

P1, . . . ,Pm are the p-values for testing H1, . . . ,Hm, respectively.

The hypotheses can be divided into two types:

1 m0 true null hypotheses : Pi ∼ U(0, 1).

2 m1 = m −m0 false null hypotheses: P(Pi ≤ x) ≥ x ,∀x ∈ [0, 1].

A discovery is made if a null hypothesis is rejected.

A false discovery is made if a true null hypothesis is rejected.
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The two most common error rates

R = the number of discoveries.

V = the number of false discoveries.

The familywise error rate (FWER) is Pr(V > 0) .

The false discovery rate (FDR1) is E
(

V
max(R,1)

)
.

The two error rates coincide if m0 = m.

Procedures that control the FWER offer also FDR control:

E

(
V

max(R, 1)

)
≤ E (I [V > 0]) = Pr(V > 0).

1Benjamini and Hochberg, 1995. Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.
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The Bonferroni Procedure

Reject Hi if pi ≤ α/m.

Properties:

FWER is controlled at level α:

Pr(V > 0) = Pr(∪i∈I0Pi ≤ α/m) ≤
∑
i∈I0

Pr(Pi ≤ α/m) = m0α/m ≤ α,

where I0 ⊆ {1, . . . ,m} is the subset of true null hypotheses.

The FWER error control is valid for any type of dependency across
the p-values P1, . . . ,Pm.
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The BH procedure

1 Sort the p-values p(1) ≤ . . . ≤ p(m), with corresponding
H(1), . . . ,H(m).

2 Find R = arg maxj=1,...,m{p(j) ≤ αj/m}.

3 Reject H(1), . . . ,H(R).

Properties:

FDR = m0
m α if the p-values are independent1.

FDR ≤ m0
m α if the p-values are positive dependent2.

FDR ≤ (1 + 1/2 + . . .+ 1/m) m0
m α ≈ log(m) m0

m α for any type of
dependence across the p-values2.

1Benjamini and Hochberg, 1995. Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.

2Benjamini and Yekutieli, 2001. The control of the false discovery rate in multiple testing
under dependency.
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The adjusted p-values

A multiple comparison procedure adjusted p-value for a hypothesis is
the smallest nominal level at which the hypothesis would be rejected ,

given p1, . . . , pm.

The Bonferroni-adjusted p-value for Hi is

m × pi .

The Bonferroni procedure at level α rejects Hi if and only if
m × pi ≤ α.

The BH-adjusted p-value for H(i) is

min
j≥i

{
m × p(j)

j

}
.

The BH procedure at level α rejects Hi if and only if

minj≥i

{
m×p(j)

j

}
≤ α.
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Final remarks

The BH-adjusted p-values are at most as large as the Bonferroni
adjusted p-values.

Bonferroni provides simultaneous inference: the FWER guarantee is
valid for any subset of {1, . . . ,m}.

BH provide selective inference: the FDR guarantee is for the selected
set of rejected hypotheses.

More generally, with simultaneous inference the guarantee is for every
possible subset, whereas with selective inference the guarantee is for
the specific subset selected. Methods that assure simultaneous
inference also assure selective inference, but not vice versa3.

3Benjamini, 2010. Simultaneous and selective inference: Current Successes and future
Challenges.
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Multiple studies testing similar hypotheses

Examine m features in each of n studies. For feature (row) i :

Hij , j = 1, . . . , n are the n null hypotheses.

HiG = ∩n
j=1Hij is the meta-analysis (global) null hypothesis.

We have m × n hypotheses for inference:

H11 . . . H1n H1G
...

. . .
...

...
Hm1 . . . Hmn HmG
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Inference following aggregate level testing

In meta-analysis, aggregate level hypotheses testing is performed for
powerful identification of features with signal1.

A natural follow-up question is which studies contain signal within a
discovered feature.

Testing Hi1, . . . ,Hin following rejection of HiG without accounting for
the fact that HiG was rejected using an aggregate-level test statistic,
will produce biased inference 2 .

1Bhattacharjee et al., 2012. A subset-based approach improves power and interpretation for
the combined analysis of genetic association studies of heterogeneous traits.

2Bogomolov and Benjamini, 2014. Selective inference on multiple families of hypotheses.
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Goal for inference

Our goal is to develop multiple testing procedures that guarantee

control of FWER/FDR conditional on the row being selected.

This type of false positive control is particularly important if a
researcher conducts different follow-up studies for each selected row.

A related goal: Controlling the average FWER/FDR over the
selected1.

1Bogomolov and Benjamini, 2014. Selective inference on multiple families of hypotheses.
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A large scale genomic application

Expression quantitative trait loci (eQTLs) are genomic regions with
genetic variants that influence the expression level of genes.

Gene regulation is tissue specific, but within a single tissue may lack
power due to small sample size.

The discovery power of eQTL SNPs predictive of gene expression
across multiple tissues may be increased by aggregate testing across
tissue types.

For the n=17 tumor tissues in The Cancer Genome Atlas (TCGA)
Project, we aggregate the 17 eQTL test statistics to select eQTL
SNPs influencing gene expression in at least one tissue, out of
m = 7, 732, 750 candidate cis-eQTL SNPs .

We aim to discover the non-null tissues within selected eQTL SNPs.
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Notation

S ⊆ {1, . . . ,m} is the set of selected rows, e.g., all hypotheses

rejected by Bonferroni/BH on the global null p-values.

Vi = number of false discoveries for row i .

Ri = number of discoveries for row i .

The conditional FWER for row i is

E (I [Vi > 0]|i ∈ S).

The conditional FDR for row i is

E (Vi/max{Ri , 1}|i ∈ S).
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Notation

For feature (row) i :

Pij , j = 1, . . . , n are the p-values.

PiG is the global null p-value. Examples1:

piG = Pr(χ2
2n ≥ −2

n∑
j=1

log pij ).

piG = 2Pr

χ2
2n ≥ max

−2
n∑

j=1

log pL
ij ,−2

n∑
j=1

log(1− pL
ij )


 .

Our data matrix for analysis is:

p11 . . . p1n p1G
...

. . .
...

...
pm1 . . . pmn pmG

1Owen, 2009. Karl Pearson’s meta-analysis revisited.
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Our approach for inference following row-selection

1 Compute the conditional p-values, conditional on being selected.

2 Apply a valid FWER/FDR controlling procedure on the conditional
p-values.

Questions we address:

1 The row may contain both null and non-null p-values, so the
probability of selection is not known even for the simplest rule
{PiG ≤ α/m}. How can the conditional p-values be computed?

2 Even though the original p-values in a row are independent, the
conditional p-values will be dependent.
What is a valid FDR controlling procedure?
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The conditional p-value computation for a selected row

We compute the p-values conditional on the event that the row was
selected, holding all other p-values fixed .

For example, for the first column:

p′i1 = pi1/bi1, bi1 = max{p : piG (p, pi2, . . . , pin) ≤ α/m}.

This is a valid p-value, since:

Pi1 is independent of Pi2, . . . ,Pin.

if Hi1 is null, then

Pi1 | PiG ≤ α/m,Pi2 = pi2, . . . ,Pin = pin ∼ U(0, bi1).
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Properties of the conditional p-values

If PiG (1, pi2, . . . , pin) ≤ α/m, there is no inflation, i.e., p′i1 − pi1 = 0.

With Holm/BH on p′i1, . . . , p
′
in, the conditional FWER/FDR is

controlled.

Theorem

If piG ≤ ti , then the BH procedure at level α on p′i1, . . . , p
′
in controls the

conditional FDR at level ≤ n0(i)
n α.
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The conditional p-values based on Fisher’s global null

For row i , the Fisher global null p-value is

piG = Pr

χ2
2n ≥ −2

n∑
j=1

log pij

 .

The conditional p-value for column j , given piG ≤ α/m, is

p′ij =

 pij if Πn
l=1,l 6=jpil ≤ e

− 1
2
χ2

1−α/m,2n ,
Πn

l=1pil

e
− 1

2χ
2
1−α/m,2n

otherwise.
j = 1, . . . , n

If pi1 ≤ . . . ≤ pin, then p′i1 ≤ . . . ≤ p′in.
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Results for the cross-tissue eQTL analysis in TCGA

Table : The original two-sided p-values, conditional two-sided p-values, and
BH-adjusted conditional two-sided p-values for each tissue, for three eQTL SNPs
that differ in the number of post-selection discoveries.

rs10896016-CTSW p-values rs1437891-ASNSD1 p-values rs13066873-LARS2 p-values

pij p′ij BHadj p′ij pij p′ij BHadj p′ij pij p′ij BHadj p′ij
BLCA 0.01259 0.29510 0.38590 0.45523 0.45523 0.64491 0.00199 0.00199 0.00484
BRCA 0.73273 0.73273 0.83043 0.00030 0.00804 0.02278 0.00026 0.00026 0.00147
COAD 0.26604 0.29510 0.38590 0.00231 0.00231 0.02278 0.00099 0.00099 0.00362

GBM 0.36091 0.29510 0.38590 0.90232 0.90232 0.90232 0.00716 0.00716 0.01353
HNSC 0.92247 0.92247 0.98012 0.54711 0.54711 0.66435 0.54393 0.54393 0.54393
KIRC 0.00743 0.29510 0.38590 0.00000 0.00804 0.02278 0.01362 0.01362 0.01781
KIRP 0.99577 0.99577 0.99577 0.51974 0.51974 0.66435 0.00834 0.00834 0.01418

LAML 0.02349 0.29510 0.38590 0.77827 0.77827 0.82691 0.00345 0.00345 0.00733
LGG 0.13963 0.29510 0.38590 0.00005 0.00804 0.02278 0.00107 0.00107 0.00362

LIHC 0.01575 0.29510 0.38590 0.34415 0.34415 0.64491 0.01007 0.01007 0.01426
LUAD 0.00004 0.29510 0.38590 0.00078 0.00804 0.02278 0.00000 0.00000 0.00000
LUSC 0.12911 0.29510 0.38590 0.30344 0.30344 0.64481 0.04074 0.04074 0.04827

OV 0.06658 0.29510 0.38590 0.16256 0.16256 0.39479 0.00961 0.00961 0.01426
PAAD 0.25674 0.25674 0.38590 0.64167 0.64167 0.72723 0.04259 0.04259 0.04827
PRAD 0.14091 0.29510 0.38590 0.00495 0.00804 0.02278 0.06407 0.06407 0.06807
SKCM 0.01577 0.29510 0.38590 0.41503 0.41503 0.64491 0.00018 0.00018 0.00147
UCEC 0.59226 0.59226 0.71917 0.42909 0.42909 0.64491 0.00167 0.00167 0.00473

piG 3× 10−9 2× 10−10 < 10−20
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An existing alternative approach1

The BB selection adjusted procedure: apply an FWER/FDR controlling

procedure within selected rows at level |S|m α.

Theorem (based on Theorem 3 in Benjamini and Bogomolov, 2014)
If for each column, the set of p-values is PRDS on the subset of p-values corresponding to true
null hypotheses, the selection is by fixed thresholding/BH on the global null p-values, and the
procedure used for testing each selected row is level α (a) Bonferrnoi or (b) BH,
then the select-adjusted procedure guarantees in case (a)

E

(∑
i∈S I [Vi > 0]

max{|S|, 1}

)
≤ α,

and in case (b)

E

(∑
i∈S Vi/max{Ri , 1}

max{|S|, 1}

)
≤ α.

.

1Bogomolov and Benjamini, 2014. Selective inference on multiple families of hypotheses.
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Results for the cross-tissue eQTL analysis in TCGA

The BB selection adjusted procedure applies the BH procedure on the

original p-values at level 19,690
7,732,750 0.05 = 0.00013 . With BB: no

discoveries are made for the first two eQTL SNPs; a single discovery is
made for the third eQTL SNP.

rs10896016-CTSW p-values rs1437891-ASNSD1 p-values rs13066873-LARS2 p-values

pij p′ij BHadj p′ij pij p′ij BHadj p′ij pij p′ij BHadj p′ij
BLCA 0.01259 0.29510 0.38590 0.45523 0.45523 0.64491 0.00199 0.00199 0.00484
BRCA 0.73273 0.73273 0.83043 0.00030 0.00804 0.02278 0.00026 0.00026 0.00147
COAD 0.26604 0.29510 0.38590 0.00231 0.00231 0.02278 0.00099 0.00099 0.00362
GBM 0.36091 0.29510 0.38590 0.90232 0.90232 0.90232 0.00716 0.00716 0.01353
HNSC 0.92247 0.92247 0.98012 0.54711 0.54711 0.66435 0.54393 0.54393 0.54393
KIRC 0.00743 0.29510 0.38590 0.00000 0.00804 0.02278 0.01362 0.01362 0.01781
KIRP 0.99577 0.99577 0.99577 0.51974 0.51974 0.66435 0.00834 0.00834 0.01418
LAML 0.02349 0.29510 0.38590 0.77827 0.77827 0.82691 0.00345 0.00345 0.00733
LGG 0.13963 0.29510 0.38590 0.00005 0.00804 0.02278 0.00107 0.00107 0.00362
LIHC 0.01575 0.29510 0.38590 0.34415 0.34415 0.64491 0.01007 0.01007 0.01426
LUAD 0.00004 0.29510 0.38590 0.00078 0.00804 0.02278 0.00000 0.00000 0.00000
LUSC 0.12911 0.29510 0.38590 0.30344 0.30344 0.64481 0.04074 0.04074 0.04827

OV 0.06658 0.29510 0.38590 0.16256 0.16256 0.39479 0.00961 0.00961 0.01426
PAAD 0.25674 0.25674 0.38590 0.64167 0.64167 0.72723 0.04259 0.04259 0.04827
PRAD 0.14091 0.29510 0.38590 0.00495 0.00804 0.02278 0.06407 0.06407 0.06807
SKCM 0.01577 0.29510 0.38590 0.41503 0.41503 0.64491 0.00018 0.00018 0.00147
UCEC 0.59226 0.59226 0.71917 0.42909 0.42909 0.64491 0.00167 0.00167 0.00473

piG 3× 10−9 2× 10−10 < 10−20
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Simulations with block dependence

We consider 100 blocks of 11 rows, where the signal within a non-null
blocks is N11(~µ,Σ) and the signal within a null blocks is N11(~0,Σ), where

~µ =



ρ5µ
...
ρµ
µ
ρµ
...
ρ5µ


, Σ =


1 ρ ρ2 . . . ρB−1

ρ 1 ρ . . . ρB−2

...
...

...
. . .

...
ρB−1 ρB−2 ρB−3 . . . 1

 ,

In n1 studies there was one non-null block, and the remaining n − n1
studies where all null:

N11(~µ,Σ) . . . N11(~µ,Σ) N11(~0,Σ) . . . N11(~0,Σ)

N11(~0,Σ) . . . N11(~0,Σ) N11(~0,Σ) . . . N11(~0,Σ)
...

...
...

...
...

...

 ,
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Results on power:
conditional approach (solid), BB (dashed), naive (dotted)

(n, n1) = (21, 7), Row Selection by: (n, n1) = (10, 2), Row Selection by:
Bonferroni BH Bonferroni BH
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Results on error control:
conditional approach (solid), BB (dashed), naive (dotted)

(n, n1) = (21, 7), Row Selection by: (n, n1) = (10, 2), Row Selection by:
Bonferroni BH Bonferroni BH
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Summary

Following row-selection, we presented a valid and powerful selection
adjusted method for identification of columns/studies that drive the
signal in the row.

A comparison with the method of Benjamini and Bogomolov, 2014,
suggests that although it is less general, when the columns are
independent the power gain can be very large.
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Summary

Two-way structured hypotheses provide an exciting opportunity for
novel procedures with more than one error guarantee.

row within a over all column within a
level selected row the selected level selected column

Benjamini and Bogomolov1

Heller et al. 2

Foygel Barber and Ramdas3

Liu et al. 4

1Bogomolov and Benjamini, 2014. Selective inference on multiple families of hypotheses.
2Heller, Chatterjee, Krieger, and Shi, 2016. Post-selection inference following aggregate level

hypotheses testing in large scale genomic data.
3Foygel Barber and Ramdas, 2016. The p-filter: multi-layer FDR control for grouped

hypotheses.
4Liu, Sarkar, and Zhao, 2016. A new approach to multiple testing of grouped hypotheses.
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