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We look into three aspects of the learning setting:

1 Generalization: Does the empirical performance faithfully
represent the true performance of the algorithm?

2 Information: Does the hypothesis H reveal ”lots” of
information about the sample?

3 Stability: Will H be heavily ”impacted” by a ”small”
perturbation in the training sample?

In what sense, if any, are they equivalent?
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Uniform Generalization

Definition (Uniform Generalization)

A learning algorithm L : ∪∞m=1Zm → H generalizes uniformly with
rate ε > 0, if for all parametric losses and all distributions p(z) on
Z, we have |Remp(L)− Rtrue(L)| ≤ ε.

All risks are defined in expectation over the randomness of the
sample and the internal randomness of the algorithm.
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Equivalence Relationship

Theorem (NIPS, 2015)

The uniform generalization rate is equal to
J (Ztrn; H) = ||p(Ztrn)p(H) , p(Ztrn,H)||T

This is the mutual information, measured in the total variation
distnace.
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The risk of overfitting depends on many factors:

1 The hypothesis space H.

2 The domain Z.

3 The learning algorithm L.

4 · · ·

Does J (Ztrn; H) capture the phenomenon of overfitting in its full
generality?
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Stability

We write:

J (Ztrn; H) = EZtrn ||p(H) , p(H|Ztrn)||T

This is a stability constraint. Hence, uniform generalization is
equivalent to algorithmic stability.
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Information

We write:

J (Ztrn; H) = EH ||p(Ztrn) , p(Ztrn|H)||T

This is an information leakage constraint. In fact, we also have:

J (Ztrn; H) ≤
√

I (Sm; H)

2m

This is the setting recently considered by Russo and Zou (2016) for
controlling the bias of estimators in the adaptive setting.
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Domain

If Z is a countable space, then:

J (Ztrn; H) ≤
√

Ess[Z]− 1

2πm
,

where:

Ess [Z; p(z)]
.

= 1 +
(∑
z∈Z

√
p(z) (1− p(z))

)2 ≤ |Z|
is a measure of the effective size of Z.
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Size of the Hypothesis Space

It can be shown that:

J (Ztrn; H) ≤
√

H(H)

2m
≤
√

log |H|
2m

,

where H(H) is the Shannon entropy.
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VC Dimension

A finite VC dimension does not imply uniform generalization; one
can encode the sample in H.

Hence, we need to define a VC dimension in an
information-theoretic manner.

Definition (Induced Concept Class)

The concept class C induced by a learning algorithm
L : ∪∞m=1Zm → H is defined to be the set of total Boolean
functions c(z) = I{p(Ztrn = z |H) ≥ p(Ztrn = z)} for all H ∈ H.

We have:

J (Ztrn; H) ≤
4 +

√
dVC (C) (1 + log(2m))√

2m



On the Interplay between Information, Stability, and Generalization

Post Processing

Post-processing, e.g. sparsification and pruning, improves the
uniform generalization rate.

That is:

S → H1 → H2 ⇒ J (Ztrn; H1) ≥ J (Ztrn; H2)



On the Interplay between Information, Stability, and Generalization

Composition

Learning more infomration cannot improve the uniform
generalization risk.

That is, for composition (adaptive or non-adaptive), we have:

J (Ztrn; (H1,H2)) ≥ J (Ztrn; H1)
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Randomization and Privacy

Randomization improves the uniform generalization risk.

In particular, an (ε, δ) differentially private learning algorithm
satisfies:

J (Ztrn; H) ≤ eε − 1 + δ

2
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Sample Compression

A sample compression scheme of size k satisfies:

J (Ztrn; H) ≤ O
( k

m
+

√
k

m

)
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Regularized ERM

If the hypothesis is learned using:

H = arg min
h∈H

{λ
2
||h||22 +

1

m

∑
Zi∈Sm

L(Zi ; h)
}

for some convex, twice differentiable loss L(·; h), then:

J (Ztrn; H) ≤
√

d

2m
+ o
(
m−

1
2
)
,

which is valid when m� max
{

d , 1
γ2

}
.
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Composition: The General Rule

Writing:

J (A; B |C )
.

= EC ||p(A,B |C ) , p(A|C ) · p(B|C )||T

for the conditional variational information (analogous to
conditional mutual information).

Theorem

We have:

J (Z ; (H1, ...,Hk)) ≤
k∑

t=1

J (Z ; Ht | (H1, ...,Ht−1))
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Robustness

A finite amount of information (in bits) cannot alter the uniform
generalization property significantly:

J (Ztrn; (H,K )) ≤ (2 +
|K|
2

) · J (Ztrn; H) +

√
log |K|

2m
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Concentration

Theorem

We have the concentration bound:

p
{∣∣Remp(H; Sm)− Rtrue(H)

∣∣ ≥ t
}
≤ 7

2t

[
J (Ztrn; H) +

√
log 3

49m

]
,

The concentration bound is tight because there exists learning
algorithms that satisfy:

p
{∣∣Remp(H; Sm)− Rtrue(H)

∣∣ = t
}

=
J (Ztrn; H)

t
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Information-Theoretic Route

Theorem

1 A generalization in expectation does not imply concentration.

2 A uniform generalization in expectation implies concentration.

This gives an information-theoretic route from generalization in
expectation to generalization in probability.
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Q/A


