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General Setting of Learning

Learning

Zl > — L(Zl, H)
Z2 > — L(Zz, H)
Z3 > — L(Z3; H)
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We look into three aspects of the learning setting:

Generalization: Does the empirical performance faithfully
represent the true performance of the algorithm?

Information: Does the hypothesis H reveal "lots" of
information about the sample?

Stability: Will H be heavily "impacted” by a "small”
perturbation in the training sample?

In what sense, if any, are they equivalent?
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Learning

Zl > — L(Zl H)
Zg > — L(ZQ H)
Z3 > - L(Z3 H)
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Uniform Generalization

Definition (Uniform Generalization)

A learning algorithm £ : UYS_; Z™ — H generalizes uniformly with
rate € > 0, if for all parametric losses and all distributions p(z) on
Z, we have |Remp(L) — Rerue(L)| < €.

All risks are defined in expectation over the randomness of the
sample and the internal randomness of the algorithm.
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Equivalence Relationship

Theorem (NIPS, 2015)

The uniform generalization rate is equal to
j(Ztrn; H) - Hp(Ztrn)p(H)a p(Ztrm H)HT

This is the mutual information, measured in the total variation
distnace.
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The risk of overfitting depends on many factors:
The hypothesis space H.
The domain Z.
The learning algorithm L.

Does J(Zimn; H) capture the phenomenon of overfitting in its full
generality?
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Stability

We write:

j(Ztrn; H) = EZmHP(H) ) P(H‘Ztrn)HT

This is a stability constraint. Hence, uniform generalization is
equivalent to algorithmic stability.
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Information

We write:

T (Ztrm; H) = Enllp(Ztm), p(Zem|H)||T

This is an information leakage constraint. In fact, we also have:

1(Sm; H)

j(Ztrn; H) < om

This is the setting recently considered by Russo and Zou (2016) for
controlling the bias of estimators in the adaptive setting.
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Domain

If Z is a countable space, then:

[Ess[Z] — 1
Zin; H) <\ ———,
j( t ) 2mm
where:

Ess[Z; p(z +()_Vpe(z)1-p 2)))* < 2|
zeZ

is a measure of the effective size of Z.
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Size of the Hypothesis Space

It can be shown that:

)

H(H) _ \/Iog H|

2m 2m

I (Zem; H) < \/

where H(H) is the Shannon entropy.
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VC Dimension

A finite VC dimension does not imply uniform generalization; one
can encode the sample in H.

Hence, we need to define a VC dimension in an
information-theoretic manner.

Definition (Induced Concept Class)

The concept class C induced by a learning algorithm
L:UxX_; Z™ — H is defined to be the set of total Boolean
functions ¢(z) = I{p(Ztrn = z| H) > p(Zitrn = 2)} for all H € H.

We have:

4+ /dvc(C) (1 + log(2m))
V2m

j(Ztrn; H) <
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Post Processing

Post-processing, e.g. sparsification and pruning, improves the
uniform generalization rate.

That is:

S— Hl — H2 = j(Ztrn; Hl) > j(ztrn; H2)
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Composition

Learning more infomration cannot improve the uniform
generalization risk.

That is, for composition (adaptive or non-adaptive), we have:

I (Zern; (H1, H2)) > T (Zern; H1)
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Randomization and Privacy

Randomization improves the uniform generalization risk.

In particular, an (¢, d) differentially private learning algorithm

satisfies:
ec—1+6

j(ztrn; H) < >
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Sample Compression

A sample compression scheme of size k satisfies:

T (Zemi H) < 0%+ /%)
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Regularized ERM

If the hypothesis is learned using:
H = arg min {iuhw + 1 > Lz}
her L2112 T m Er "

for some convex, twice differentiable loss L(+; h), then:

[ d 1
j(Ztrn; H)S %"’_O(mii)y

which is valid when m > max {d, ?}.
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Composition: The General Rule

Writing:
J(A; B C) =Ec |lp(A, B[ C), p(AIC) - p(BIC)lIT

for the conditional variational information (analogous to
conditional mutual information).

Theorem
We have:

k
J(Z; (Hy, ... H)) <) T(Z: He | (Ha, ..., He-1))

t=1
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Robustness

A finite amount of information (in bits) cannot alter the uniform
generalization property significantly:

1Kl
2

log ||

T (Zem; (H,K)) < (2+ i

) : j(Ztrn; H) +
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Concentration

We have the concentration bound:

p{ |Remp(H: Sim) — Rerse(H)| > £} < o [T (Zem: H) + 1/ o],

The concentration bound is tight because there exists learning
algorithms that satisfy:

j(Ztrn; H)

p{| Remp(H; Sm) — Resse( )] = £} = L
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Information-Theoretic Route

A generalization in expectation does not imply concentration.

A uniform generalization in expectation implies concentration.

This gives an information-theoretic route from generalization in
expectation to generalization in probability.



On the Interplay between Information, Stability, and Generalization

Q/A



