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Adaptive Data Analysis

 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Worry: analyst finds a query for which the dataset is not 

representative of population; reports surprising discovery
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Differential Privacy for Adaptive Validity

 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Differential privacy neutralizes risks incurred by adaptivity

 Definition of privacy tailored to statistical analysis of large data sets

q1

a1

Database data analyst

DP
q2

a2

q3

a3

[D., Feldman, Hardt, Pitassi, Reingold, Roth ’14]

DP
𝑆

𝑞1: > 6 ft?

𝑞2: muffin tops?

𝑞2: muffin bottoms?



Differential Privacy for Adaptive Validity

 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Differential privacy neutralizes risks incurred by adaptivity

 ∃ LARGE literature on DP algorithms for data analysis
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Some Intuition
 Fix a query, eg, “What fraction of population is over 6 feet tall?”

 Almost all large datasets will give an approximately correct reply

 Most datasets are representative with respect to this query

 If, in the process of adaptive exploration, the analyst finds a 

query for which the dataset is not representative, then she must 

have “learned something significant” about the dataset.

 Preserving the “privacy” of the data may prevent over-fitting.



Intuition After Nati’s Talk
 Differential Privacy: The outcome of any analysis is essentially equally 

likely, independent of whether any individual joins, or refrains from joining, 

the dataset.

 This is a stability requirement.

 Gave rise to the folklore that differential privacy yields generalizability.

 But we will be able to say something stronger.



 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Differential privacy neutralizes risks incurred by adaptivity

 E.g., for statistical queries: whp 𝐸𝑆 𝐴 𝑆 − 𝐸𝑃 𝐴 𝑆 < 𝜏

 High probability is important for handling many queries

[D., Feldman, Hardt, Pitassi, Reingold, Roth ’14]
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𝑞𝑖(𝑆) fails to generalize

Formalization
 Data sets 𝑆 ∈ 𝑋𝑛; 𝑆 ∼ 𝐷

 Queries 𝑞: 𝑋𝑛 → 𝑌

 Algorithms that choose queries and output results

 𝐴1 = 𝑞1 (trivial choice), outputs (𝑞1, 𝑞1(𝑆))

 𝐴𝑖: 𝑋𝑛 × 𝑌1 ×⋯× 𝑌𝑖−1 → 𝑌𝑖 where

 𝑞𝑖 = 𝐶𝑖(𝑦1, … , 𝑦𝑖−1)

 𝐴𝑖 𝑆, 𝑦1, … , 𝑦𝑖−1 = 𝑞𝑖 , 𝑞𝑖 𝑆 = (𝑞𝑖 , 𝑎𝑖)

 𝐻 ≝ 𝑆, 𝑞 𝑞 𝑆 not representative wrt 𝐷}

 ∀ 𝑦1, … , 𝑦𝑖−1 Pr
𝑆

𝑆, 𝑞𝑖 ∈ 𝐻 ≤ 𝛽𝑖

 We want: Pr[ 𝑺, 𝐶𝑖 𝑺 ∈ 𝐻] to be similar

 𝑞𝑖(𝑆) should generalize even when 𝑞𝑖 chosen  as a function of 𝑆

Choose new query 

based on history of 

observations

Output chosen query 

and its response on 𝑆
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Differential Privacy  [D.,McSherry,Nissim,Smith ‘06] 

𝑀 gives 𝜖-differential privacy if for all pairs of adjacent data sets 

𝑆, 𝑆′, and all events 𝑇

Pr 𝑀 𝑆 ∈ 𝑇 ≤ 𝑒𝜖 Pr 𝑀 𝑆′ ∈ 𝑇

Randomness introduced by 𝑀



Differential Privacy  [D.,McSherry,Nissim,Smith ‘06] 
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Differential Privacy  [D.,McSherry,Nissim,Smith ‘06] 

𝑀 gives 𝜖-differential privacy if for all pairs of adjacent data sets 

𝑆, 𝑆′, and all events 𝑇

For random variables 𝑿,𝒀 over Χ, the max-divergence of 𝑿 from 𝒀 is given by 

𝐷∞(𝑿| 𝒀 = logmax
x∈𝑋

Pr[𝑿 = 𝑥]

Pr[𝒀 = 𝑥]

Then 𝜖-DP equivalent to 𝐷∞ 𝑀 𝑆 ||𝑀(𝑆′) ≤ 𝜖.

Group Privacy: ∀𝑆, 𝑆′′ 𝐷∞ 𝑀 𝑆 ||𝑀 𝑆′ ≤ Δ 𝑆, 𝑆′′ 𝜖.

Pr 𝑀 𝑆 ∈ 𝑇 ≤ 𝑒𝜖 Pr 𝑀 𝑆′ ∈ 𝑇



Properties
 Closed under post-processing

 Max-divergence remains bounded 

 Automatically yields group privacy
 𝑘𝜖 for groups of size 𝑘

 Understand behavior under adaptive composition
 Can bound cumulative privacy loss over multiple analyses

 “The epsilons add up” 

 Programmable
 Complicated private analyses from simple private building blocks



The Power of Composition
 Lemma: The choice of 𝑞𝑖 is differentially private.

 Closure under post-processing.

 Inductive step (key):  If 𝑞 is chosen in a differentially private 

fashion with respect to 𝑆, then

Pr[ 𝑺, 𝐶(𝑺) ∈ 𝐻] is small

 Sufficiency: union bound.
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Description Length
 Let 𝐴: 𝑋𝑛 → 𝑌.

 Description length of 𝐴 is the cardinality of its range

If ∀𝑦 Pr𝑆 𝑆, 𝑦 ∈ 𝐻 ≤ 𝛽, then Pr
S

𝑆, 𝐴 𝑆 ∈ 𝐻 ≤ 𝑌 ⋅ 𝛽

 Description length composes too.

 Product: 𝛽 ⋅ Π𝑖|𝑌𝑖|

 And, morally, it is closed under post-processing

 Once you fix the randomness of the post-processing algorithm

[D., Feldman, Hardt, Pitassi, Reingold, Roth ’15]



Approximate max-divergence

𝛽-approximate max-divergence of 𝑿 from 𝒀
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Approximate max-divergence

𝛽-approximate max-divergence of 𝑿 from 𝒀

𝐷∞
𝛽
(𝑿| 𝒀 = log max

𝑇∈𝑋, Pr 𝑿∈𝑇 >𝛽

Pr 𝑿 ∈ 𝑇 − 𝛽

Pr[𝒀 ∈ 𝑇]

We are interested in (with 𝛽, but too messy)
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Approximate max-divergence

𝛽-approximate max-divergence of 𝑿 from 𝒀

𝐷∞
𝛽
(𝑿| 𝒀 = log max

𝑇∈𝑋, Pr 𝑿∈𝑇 >𝛽

Pr 𝑿 ∈ 𝑇 − 𝛽

Pr[𝒀 ∈ 𝑇]

We are interested in (with 𝛽, but too messy)

𝐷∞((𝑺, 𝐴 𝑺 )||𝑺 × 𝐴 𝑺 ) = logmax
𝑇

Pr[ 𝑺,𝐴 𝑺 ∈𝑇]

Pr[𝑺×𝐴 𝑺 ∈𝑇]

How much more likely is 𝐴(𝑆) to relate to 𝑆 than to a fresh 𝑆′?

Captures the maximum amount of information that an output of an algorithm might 

reveal about its input



Unifying Concept: Max-Information
 𝐼∞

𝛽
𝑿; 𝒀 = 𝐷∞

𝛽
((𝑿, 𝒀)||𝑿 × 𝒀)

 We are interested in 𝐼∞
𝛽
(𝑺; 𝐴 𝑺 )

 Theorem: If 𝐼∞
𝛽
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 Pr 𝑺, 𝐴 𝑺 ∈ 𝑇 ≤ 2𝑘 Pr 𝑺 × 𝐴 𝑺 ∈ 𝑇 + 𝛽

 So Pr 𝑺, 𝐴 𝑺 ∈ 𝐻 ≤ 2𝑘max
𝑦∈𝑌

Pr 𝑺, 𝑦 ∈ 𝐻 + 𝛽 !
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 𝐼∞

𝛽
𝑿; 𝒀 = 𝐷∞

𝛽
((𝑿, 𝒀)||𝑿 × 𝒀)

 We are interested in 𝐼∞
𝛽
(𝑺; 𝐴 𝑺 )

 Theorem: If 𝐼∞
𝛽
𝑺; 𝐴 𝑺 ≤ 𝑘 then for any 𝑇 ⊆ 𝑋𝑛 × 𝑌

 Pr 𝑺, 𝐴 𝑺 ∈ 𝑇 ≤ 2𝑘 Pr 𝑺 × 𝐴 𝑺 ∈ 𝑇 + 𝛽

 So Pr 𝑺, 𝐴 𝑺 ∈ 𝐻 ≤ 2𝑘max
𝑦∈𝑌

Pr 𝑺, 𝑦 ∈ 𝐻 + 𝛽 !

 Max-Information composes and is closed under post-processing

 For 𝜖-DP 𝐴: 𝐼∞ 𝐴, 𝑛 ≤ 𝜖𝑛 log2 𝑒.  Better bounds for 𝐼∞
𝛽
(𝐴, 𝑛).
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𝛽
𝐴, 𝑛 ≤ log

𝑌

𝛽

[D., Feldman, Hardt, Pitassi, Reingold, Roth ’15]

Bound on worst case approximate max info for 

any distribution on 𝑛-element databases



Abstract is Good
 Focusing on properties is powerful

 Completely universal approach to validity of adaptive analysis

 DP, small description length, low max-information

 Large numbers of arbitrary adaptively chosen computations

 Closure under post-processing and composition



Long Live the Dataset!
 Leaking information slowly prolongs the lifetime of the system

 Similar to the situation with privacy for the sake of privacy
 To avoid too much cumulative loss, answer with smaller values of 𝜖

 Essential: Fundamental Law of Information Leakage

 Overly accurate estimates of too many statistics is blatantly non-private.

 Dealer’s choice

 Conjecture: The same is true for adaptivity.

 Failure to control cumulative max-info leads to failure to generalize

 Important policy Implications!

 Supporting evidence: Hardt-Ullman queries



Thank you!

NIPS Workshop on Adaptive Data Analysis, Montreal, 12/11/15


