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Adaptive Data Analysis

 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Worry: analyst finds a query for which the dataset is not 

representative of population; reports surprising discovery
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Differential Privacy for Adaptive Validity

 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Differential privacy neutralizes risks incurred by adaptivity

 Definition of privacy tailored to statistical analysis of large data sets
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Differential Privacy for Adaptive Validity

 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Differential privacy neutralizes risks incurred by adaptivity

 ∃ LARGE literature on DP algorithms for data analysis
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Some Intuition
 Fix a query, eg, “What fraction of population is over 6 feet tall?”

 Almost all large datasets will give an approximately correct reply

 Most datasets are representative with respect to this query

 If, in the process of adaptive exploration, the analyst finds a 

query for which the dataset is not representative, then she must 

have “learned something significant” about the dataset.

 Preserving the “privacy” of the data may prevent over-fitting.



Intuition After Nati’s Talk
 Differential Privacy: The outcome of any analysis is essentially equally 

likely, independent of whether any individual joins, or refrains from joining, 

the dataset.

 This is a stability requirement.

 Gave rise to the folklore that differential privacy yields generalizability.

 But we will be able to say something stronger.



 𝑞𝑖 depends on 𝑎1, 𝑎2, … , 𝑎𝑖−1
 Differential privacy neutralizes risks incurred by adaptivity

 E.g., for statistical queries: whp 𝐸𝑆 𝐴 𝑆 − 𝐸𝑃 𝐴 𝑆 < 𝜏

 High probability is important for handling many queries

[D., Feldman, Hardt, Pitassi, Reingold, Roth ’14]
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𝑞𝑖(𝑆) fails to generalize

Formalization
 Data sets 𝑆 ∈ 𝑋𝑛; 𝑆 ∼ 𝐷

 Queries 𝑞: 𝑋𝑛 → 𝑌

 Algorithms that choose queries and output results

 𝐴1 = 𝑞1 (trivial choice), outputs (𝑞1, 𝑞1(𝑆))

 𝐴𝑖: 𝑋𝑛 × 𝑌1 ×⋯× 𝑌𝑖−1 → 𝑌𝑖 where

 𝑞𝑖 = 𝐶𝑖(𝑦1, … , 𝑦𝑖−1)

 𝐴𝑖 𝑆, 𝑦1, … , 𝑦𝑖−1 = 𝑞𝑖 , 𝑞𝑖 𝑆 = (𝑞𝑖 , 𝑎𝑖)

 𝐻 ≝ 𝑆, 𝑞 𝑞 𝑆 not representative wrt 𝐷}

 ∀ 𝑦1, … , 𝑦𝑖−1 Pr
𝑆

𝑆, 𝑞𝑖 ∈ 𝐻 ≤ 𝛽𝑖

 We want: Pr[ 𝑺, 𝐶𝑖 𝑺 ∈ 𝐻] to be similar

 𝑞𝑖(𝑆) should generalize even when 𝑞𝑖 chosen  as a function of 𝑆

Choose new query 

based on history of 

observations

Output chosen query 

and its response on 𝑆
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Differential Privacy  [D.,McSherry,Nissim,Smith ‘06] 

𝑀 gives 𝜖-differential privacy if for all pairs of adjacent data sets 

𝑆, 𝑆′, and all events 𝑇

Pr 𝑀 𝑆 ∈ 𝑇 ≤ 𝑒𝜖 Pr 𝑀 𝑆′ ∈ 𝑇

Randomness introduced by 𝑀



Differential Privacy  [D.,McSherry,Nissim,Smith ‘06] 

𝑀 gives 𝜖-differential privacy if for all pairs of adjacent data sets 

𝑆, 𝑆′, and all events 𝑇

For random variables 𝑿,𝒀 over Χ, the max-divergence of 𝑿 from 𝒀 is given by 

𝐷∞(𝑿| 𝒀 = logmax
x∈𝑋

Pr[𝑿 = 𝑥]
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Then 𝜖-DP equivalent to 𝐷∞ 𝑀 𝑆 ||𝑀(𝑆′) ≤ 𝜖.

Pr 𝑀 𝑆 ∈ 𝑇 ≤ 𝑒𝜖 Pr 𝑀 𝑆′ ∈ 𝑇
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Differential Privacy  [D.,McSherry,Nissim,Smith ‘06] 

𝑀 gives 𝜖-differential privacy if for all pairs of adjacent data sets 

𝑆, 𝑆′, and all events 𝑇

For random variables 𝑿,𝒀 over Χ, the max-divergence of 𝑿 from 𝒀 is given by 

𝐷∞(𝑿| 𝒀 = logmax
x∈𝑋

Pr[𝑿 = 𝑥]

Pr[𝒀 = 𝑥]

Then 𝜖-DP equivalent to 𝐷∞ 𝑀 𝑆 ||𝑀(𝑆′) ≤ 𝜖.

Group Privacy: ∀𝑆, 𝑆′′ 𝐷∞ 𝑀 𝑆 ||𝑀 𝑆′ ≤ Δ 𝑆, 𝑆′′ 𝜖.
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Properties
 Closed under post-processing

 Max-divergence remains bounded 

 Automatically yields group privacy
 𝑘𝜖 for groups of size 𝑘

 Understand behavior under adaptive composition
 Can bound cumulative privacy loss over multiple analyses

 “The epsilons add up” 

 Programmable
 Complicated private analyses from simple private building blocks



The Power of Composition
 Lemma: The choice of 𝑞𝑖 is differentially private.

 Closure under post-processing.

 Inductive step (key):  If 𝑞 is chosen in a differentially private 

fashion with respect to 𝑆, then

Pr[ 𝑺, 𝐶(𝑺) ∈ 𝐻] is small

 Sufficiency: union bound.

q1

a1

Database data analyst

M
q2

a2

q3

a3

DP
𝑆



Description Length
 Let 𝐴: 𝑋𝑛 → 𝑌.

 Description length of 𝐴 is the cardinality of its range

If ∀𝑦 Pr𝑆 𝑆, 𝑦 ∈ 𝐻 ≤ 𝛽, then Pr
S

𝑆, 𝐴 𝑆 ∈ 𝐻 ≤ 𝑌 ⋅ 𝛽

 Description length composes too.

 Product: 𝛽 ⋅ Π𝑖|𝑌𝑖|

 And, morally, it is closed under post-processing

 Once you fix the randomness of the post-processing algorithm

[D., Feldman, Hardt, Pitassi, Reingold, Roth ’15]



Approximate max-divergence
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Approximate max-divergence

𝛽-approximate max-divergence of 𝑿 from 𝒀
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Pr[ 𝑺,𝐴 𝑺 ∈𝑇]

Pr[𝑺×𝐴 𝑺 ∈𝑇]

How much more likely is 𝐴(𝑆) to relate to 𝑆 than to a fresh 𝑆′?

Captures the maximum amount of information that an output of an algorithm might 

reveal about its input



Unifying Concept: Max-Information
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Pr 𝑺, 𝑦 ∈ 𝐻 + 𝛽 !

 Max-Information composes and is closed under post-processing

 For 𝜖-DP 𝐴: 𝐼∞ 𝐴, 𝑛 ≤ 𝜖𝑛 log2 𝑒.  Better bounds for 𝐼∞
𝛽
(𝐴, 𝑛).
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Bound on worst case approximate max info for 

any distribution on 𝑛-element databases



Abstract is Good
 Focusing on properties is powerful

 Completely universal approach to validity of adaptive analysis

 DP, small description length, low max-information

 Large numbers of arbitrary adaptively chosen computations

 Closure under post-processing and composition



Long Live the Dataset!
 Leaking information slowly prolongs the lifetime of the system

 Similar to the situation with privacy for the sake of privacy
 To avoid too much cumulative loss, answer with smaller values of 𝜖

 Essential: Fundamental Law of Information Leakage

 Overly accurate estimates of too many statistics is blatantly non-private.

 Dealer’s choice

 Conjecture: The same is true for adaptivity.

 Failure to control cumulative max-info leads to failure to generalize

 Important policy Implications!

 Supporting evidence: Hardt-Ullman queries



Thank you!

NIPS Workshop on Adaptive Data Analysis, Montreal, 12/11/15


