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Adaptive Data Analysis I

—y q,: muffin bottoms?

Database S ~ D data analyst

» g; dependsonaqy, a,,...,a;_q

» Worry: analyst finds a query for which the dataset is not
representative of population; reports surprising discovery



q,: muffin tops?

q,: muffin bottoms?

Database " data analyst

» g; dependsonaqy, a,,...,a;_q
» Differential privacy neutralizes risks incurred by adaptivity
Definition of privacy tailored to statistical analysis of large data sets

[D., Feldman, Hardt, Pitassi, Reingold, Roth "14]



q,: muffin tops?

Differential Privacy for Adaptive ¥

q,: muffin bottoms?

Database data analyst

» g; dependsonaqy, a,,...,a;_q
» Differential privacy neutralizes risks incurred by adaptivity
3 LARGE literature on DP algorithms for data analysis

[D., Feldman, Hardt, Pitassi, Reingold, Roth "14]



Some Intuition

» Fix a query, eg, “What fraction of population is over 6 feet tall?”

» Almost all large datasets will give an approximately correct reply
Most datasets are representative with respect to this query

» If, in the process of adaptive exploration, the analyst finds a
query for which the dataset is not representative, then she must
have “learned something significant” about the dataset.

Preserving the “privacy” of the data may prevent over-fitting.



Intuition After Nati's Talk

Differential Privacy: The outcome of any analysis is essentially equally
likely, independent of whether any individual joins, or refrains from joining,
the dataset.

This is a stability requirement.
Gave rise to the folklore that differential privacy yields generalizability.
But we will be able to say something stronger.



q,: muffin tops?

q,: muffin bottoms?

Database data analyst

» g; dependsonaq,a,, ...,a;_1

» Differential privacy neutralizes risks incurred by adaptivity
E.g., for statistical queries: whp |Eq|A(S)] — Ep|[A(S)]| < T
High probability is important for handling many queries

[D., Feldman, Hardt, Pitassi, Reingold, Roth "14]



Formalization Choose new query

based on history of
» DatasetsS € X™; S ~D observations

» Queriesq: X" -»Y
» Algorithms that choose querie output results Output chosen query

Ay = qq (trivial chojgesBTiputs (g4, 1 (S)) and its response on S
A XM X X Y,_q > Y; where

qi = C;(y1, - Yi-1)
Ai(S,y1, 0 Yic1) = (1,4i(S)) = (g1, @) —
» H ¥ {(S,q) | g(S) not representative wrt D} <_+»
V(1 - Yie) Prol(S,q) € HI < B; z
» We want: Pr((S, C;(S)) € H] to be simil2
q;(S) should generalize even when g; chose€ nction of S

q;(S) fails to generalize



Differential Privacy [D.,McSherry,Nissim,Smith ‘06]

M gives e-differential privacy if for all pairs of adjacent data sets
S,S' and all events T

PriM(S) € T] < e€Pr[M(S’) € T]

Randomness introduced by M



Differential Privacy [D.,McSherry,Nissim,Smith ‘06]

M gives e-differential privacy if for all pairs of adjacent data sets
S,S' and all events T

PriM(S) e T] < e€Pr[M(S') € T]
For random variables X, Y over X, the max-divergence of X from Y is given by

X]

D (X||Y) =1 PriX
o (X|1Y) = log max 5oe——

Then e-DP equivalent to D, (M (S)||M(S")) < €.



Differential Privacy [D.,McSherry,Nissim,Smith ‘06]

M gives e-differential privacy if for all pairs of adjacent data sets
S,S' and all events T

PriM(S) € T] < e€Pr[M(S’) € T]
For random variables X, Y over X, the max-divergence of X from Y is given by

Pr[X = x]
Pr|Y = x]

Do (X||Y) = logmax

Then e-DP equivalent to D, (M (S)||M(S")) < €.
Closed under post-processing: Do, (A(M(S))||[A(M(S"))) < e.



Differential Privacy [D.,McSherry,Nissim,Smith ‘06]

M gives e-differential privacy if for all pairs of adjacent data sets
S,S' and all events T

PriM(S) € T] < e€Pr[M(S’) € T]
For random variables X, Y over X, the max-divergence of X from Y is given by

Pr[X = x]
Pr|Y = x]

Do (X||Y) = logmax

Then e-DP equivalent to D, (M (S)||M(S")) < €.
Group Privacy: VS, S" Do, (M(S)[|M(S")) < A(S,S")e.



Properties

» Closed under post-processing
Max-divergence remains bounded

» Automatically yields group privacy
ke for groups of size k

» Understand behavior under adaptive composition

Can bound cumulative privacy loss over multiple analyses
“The epsilons add up”

» Programmable
Complicated private analyses from simple private building blocks



The Power of Composition

» Lemma: The choice of g; is differentially private.
Closure under post-processing.

» Inductive step (key): If g is chosen in a differentially private
fashion with respect to S, then

Pr[(S,C(S)) € H] is small
Sufficiency: union bound.

Database

I

data analyst



Description Length

» LetA: X" - Y.
» Description length of A is the cardinality of its range

If vy Prg [(S,y) € H] < B, then Psr[(S,A(S)) eH|<|Y|-B

» Description length composes too.
Product: - I1;|Y;]

» And, morally, it is closed under post-processing
Once you fix the randomness of the post-processing algorithm

[D., Feldman, Hardt, Pitassi, Reingold, Roth "15]



Approximate max-divergence

[-approximate max-divergence of X from Y

o8 i) PrIXeT|]-p
o (X|Y) = log TEX, %?[%?ieﬂw PriY € T]



Approximate max-divergence

[-approximate max-divergence of X from Y

o8 Uy PrIXeT|]-p
o (X|Y) = 98 rex, ﬁrﬁ[&}(}éﬂw PriY € T]

We are interested in (with 5, but too messy)

- Pr[(S,A(S)) €T]
Doo ((S, A(S)IIS X A(S)) = logmax 5 ==




Approximate max-divergence

[-approximate max-divergence of X from Y

o8 i) PrIXeT|]-p
o (X[IY) = log TEX, ﬁ?ﬁ?@ﬂw PrlY € T]

We are interested in (with 5, but too messy)

- Pr[(S,A(S)) €T]
Doo ((S, A(S)IIS X A(S)) = logmax 5 ==

How much more likely is A(S) to relate to S than to a fresh S'?

Captures the maximum amount of information that an output of an algorithm might
reveal about its input



Unifying Concept: Max-Information

» I5(X;Y) = DE((X, Y)[IX X ¥)
» We are interested in Iff, (S; A(S))

» Theorem: If IZ (S; A(S)) < k thenforany T € X™ x Y
Pr[(S,A(S)) e T| < 2*Pr[S x A(S) € T] + B
So Pr((S,A(S)) € H| < 2k max Pr((S,y) e H] + B!

[D., Feldman, Hardt, Pitassi, Reingold, Roth "15]



Unifying Concept: Max-Information

» 1,(X;¥) = DL ((X, V)X X ¥)

» We are interested in If) (S; A(S))

» Theorem: If IZ (S; A(S)) < k thenforany T € X™ x Y
Pr[(S,A(S)) e T| < 2XPr[S x A(S) € T] + B
So Pr[(S,A(S)) € H] < 2k r)rzleagc Pr[(S,y) e H| + B!

» Max-Information composes and is closed under post-processing

» Fore-DP A:1,,(A,n) < enlog, e. Better bounds for Iﬁ(A, n).

Y]

> Ig,(A, n) < log (?)

Bound on worst case approximate max info for

any distribution on n-element databases

[D., Feldman, Hardt, Pitassi, Reingold, Roth "15]



Abstract is Good

» Focusing on properties is powerful
Completely universal approach to validity of adaptive analysis
DP, small description length, low max-information

Large numbers of arbitrary adaptively chosen computations
Closure under post-processing and composition



Long Live the Dataset!

» Leaking information slowly prolongs the lifetime of the system

» Similar to the situation with privacy for the sake of privacy
To avoid too much cumulative loss, answer with smaller values of e

Essential: Fundamental Law of Information Leakage
Overly accurate estimates of too many statistics is blatantly non-private.
Dealer’s choice

» Conjecture: The same is true for adaptivity.
Failure to control cumulative max-info leads to failure to generalize

Important policy Implications!
Supporting evidence: Hardt-Ullman queries



Thank you!

NIPS Workshop on Adaptive Data Analysis, Montreal, 12/11/15




