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Distribution D Sample S Hypothesis

- _— { Learning Alg J —— h

« domain: contains all possible examples
e hypothesis: X-> {0,1} labels examples
e learning alg samples labeled examples, returns hypothesis




Distribution D Sample S

Hypothesis
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The goal of science:
Find hypothesis that has low true error on the distribution D:
err(h) = Prx-p[h(X) # h*(x)]




Why does

science work?
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Distribution D Sample S

Hypothesis

- _— { Learning Alg J —— h

The goal of science:

Find hypothesis that has low true error on the distribution D:
err(h) = Prx-p[h(X) # h*(x)]

ldea: find hypothesis that has low empirical error on S, plus
guarantee that findings on the sample generalize to D



Distribution D Sample S

Hypothesis

- _— { Learning Alg J — h
Empirical error:

erre(h) = 1/n Xxes 1[h(x) # h*(x)]
Generalization: output h s.t.
Pr[Ih(S)-h(D) |]<a]>1-8




THEOREM 6.7 (The Fundamental Theorem of Statistical Learning) Let H be a
hypothesis class of functions from a domain X' to {0,1} and let the loss function
be the 0 — 1 loss. Then, the following are equivalent:

1. 'H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner for H.
3. H is agnostic PAC learnable.

4. H is PAC learnable.

5. Any ERM rule is a successful PAC learner for H.

6. H has a finite VC-dimension.

taken from Understanding Machine Learning, Shai Shalev-Schwarts and Shai Ben-David



Problem
solved!




Problem Science doesn'’t

solved? happen in a
vacuum.




One thing that can go wrong: post-processing

Example: S € {0,1}" generalizing hypothesis h, |h| = ¢

KW=( h | S ) and define h'(-) = h(-)

J | J
| |

' n

* Doesn’t have to be explicit or malicious.



e Learning an SVM: Output encodes Support Vectors (sample points)
e This output could be post-processed to obtain a non-generalizing
hypothesis: “10% of all data points are x_k”




Oh, man. Our approach on this Kaggle competition really failed on thew

test data. Oh well, let’s try again. I

W

{Did you see that paper published by the Smith lab?
=

(Yeah, | bet they’d see an even bigger effect if they accounted for
Tsunspots!

The journal requires open access to the data—let’s try it and see!




A second big problem: adaptive composition
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A second big problem: adaptive composition
D

Adaptive composition can cause overfitting!
Generalization guarantees don’t “add up”
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A second big problem: adaptive composition
D

Adaptive composition can cause overfitting!
Generalization guarantees don’t “add up”

* Pick parameters; fit model
* ML competitions
* Scientific fields that share one dataset



Some basic guestions

* |s it possible to get good learning algorithms that also are
robust to post-processing? Adaptive composition?

* How to construct them? Existing algorithms? How much extra
data do they need?

» Accuracy + generalization + post-processing-robustness = ?
« Accuracy + generalization + adaptive composition = ?

* What composes with what? How well (how quickly does
generalization degrade)? Why?



Notice: generalization doesn’t require correct hypotheses, just
that they perform the same on the sample as on the distribution

Generalization alone is easy.
What's interesting: generalization + accuracy.




Generalization + post-processing robustness

* Robust generalization

“no adversary can use output to find a hypothesis that
overfits”

information-theoretic (could think computational)



Robust Generalization
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Mechanism M: X™ — R is («a, 8)-Robustly Generalizing if
V distributions D € AX, V adversary A, w.p. 1 — ¢ over S ~; ;4 D",

Pr[A(M(S)) outputs h: X — {0,1} s.t. |h(S) — h(D)| < a] >1—vy
where f =& + y.

/
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Robust Generalization
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Mechanism M: X™ — R is (a, 8)-Robustly Generalizing if
V distributions D € AX, V adversary A, w.p. 1 — & over S ~;;4 D",

Pr[A(M(S)) outputs h: X — {0,1} s.t. |h(S) — h(D)| < a] >1—vy
where f =& + y.

/

* Somewhat robust to adaptive composition (more on this later)

{ ’ J_.hl _.{ A }—hz

Robust to post-processing
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Robustly-Generalizing Algs
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Compression schemes

Hypothesis class H has a compression scheme of size k if there exists:
* compression algorithm A: X" — X*

* encoding algorithm: B: X¥ - H

s.t. h' = B(A(S))isERMon S, i.e. errg(h') < errz(h), Vh € H.

Hypothesis

hl

Sample S Sr




Compression schemes

Hypothesis class H has a compression scheme of size k if there exists:
* compression algorithm A: X" — X*

* encoding algorithm: B: X¥ - H

s.t. h' = B(A(S))isERMon S, i.e. errg(h') < errz(h), Vh € H.

Hypothesis

hl

Sample S g’

{ L = B °A is a compression learner }




Robust Generalization via compression

Theorem: If class H has a compression scheme of size k, then H is PAC-learnable
under RG by a compression learner with

* (a, f)-accuracy
* (¢,0)-RG

* sample complexity k poly(— - logﬁ ]og—)

Proof idea:

1. Lemma [LW ‘86]: If class H has a compression scheme of size k, then H is PAC-
learnable with (a, f)-accuracy and sample complexity k poly(— log—)

2. Lemma: Let A be a compression algorithm then A is (€, §)-RG for
klog(n/d)
V n

e =20




What Can be Learned under RG?7

Theorem (informal; thanks to Shay Moran): sample complexity of
robustly generalizing learning is the same up to log factors, as
the sample complexity of PAC learning




Do Robustly-Generalizing Algs Exist?

Yes!

* This paper: Compression Schemes -> Robust
Generalization

« [DFHPRR15a]: Bounded description length -> Robust
Generalization

* [BNSSSU16]: Differential privacy -> Robust Generalization



*Theorem [DFHPRR ‘15]: Let M: X™ — R s.t. |R| bounded. Then M is
Byt o = A0

2n

[ Small description length = robust generalization ]

Theorem [BNSSSU ’16]: Let M: X™ — R be (€,8)-DP. Then M is
(0(€),0(8/€))-RG when n = 0(In; /€?).

[ Differential privacy = robust generalization ]

* Adaptive composition within each method but not across



Differential Privacy |

DMNS ‘006]

-~

o

Mechanism M: X™ — R is (€, §)-Differentially Private if
V pairs of samples S, S’ that differ in one element, V O € R,

Pr[M(S) e 0] <e€-Pr[M(S') €eO0]+ 6
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Differential Privacy [DMNS ‘06]

/
Mechanism M: X™ — R is (€, §)-Differentially Private if

V pairs of samples S, S’ that differ in one element, V O € R,

Pr[M(S) e 0] <e€-Pr[M(S') €eO0]+ 6

\_

--:/\

. I310(|)3]ust to post-processing [DMNS ‘06] and adaptive composition [DRV

* Necessarily randomized output
* No mention of how samples drawn!




)Oes

DP =

RG?



Does DP = RG?

Obvious answer: No, DP algorithms must be randomized and RG can be
deterministic.

Is this difference cosmetic?

Theorem (Informal): There exists a learning task than can be solved
under RG but not under DP.

Threshold Learning:

~_ |1lify<x
hy(y) = {Oify>x
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Does DP = RG?

Obvious answer: No, DP algorithms must be randomized and RG can be
deterministic.

Is this difference cosmetic?

Theorem (Informal): There exists a learning task than can be solved
under RG but not under DP.

Threshold Learning:

_|1lify<x
ha(y) = {Oify>x

X

[ No “quick fix” to make RG learner satisfy DP ]




Notions of generalization

* Robust generalization
“no adversary can use output to find a hypothesis that overfits”

* Differential privacy [DMNS ‘06]

“similar samples should have the same output”

* Perfect generalization
“output reveals nothing about the sample”



Perfect Generalization
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Mechanism M: X™ — R is (B, €, §)-Perfectly Generalizing if
V distributions D € AX, 3 simulator SIMp, w.p. 1 —f overS ~; ;4 D",

Pr[M(S) € 0] < e€ - Pr[SIM, € 0] + &

~

/

(SIMp = oracle access to the distribution)



PG as a privacy notion

* Differential privacy gives privacy to the individual

Changing one entry in the database shouldn’t change the output too
much

 Perfect generalization gives privacy to the data provider

(e.g. school, hospital)

Changing the entire sample to something “typical” shouldn’t change
the output too much



—xponential Mechanism [MTO7]

“output an element of the range with probability proportional to
exponential of quality score”

Let M: X™ — R be (¢,0)-DP. Define foreach S € X" and r € R:
q(S,r) = log(Pr[M(S) = r])
Define M;: X™ — R as follows
Pr[Mg(S) = r] = exp(q(S,7))
To prove Mg is PG, use SIMp with output dist.
Pr[SIMp = r] x exp(E3~iian[q(S, 1)



DP implies PG with worse parameters

Theorem: Let M: X™ — R be (¢,0)-DP. Then M is
(B,/2nIn (1/B) €, 0)-PG.

[ Dependence on n and £ asymptotically tight

Proof idea:

1. Every (€, 0)-DP mechanism can be written as Exponential
Mechanism

2. Exponential Mechanism satisfies PG

[ Open: Reduction from (€, 8)-DP to PG




PG implies DP...sort of



PG implies DP...sort of

PG mechanisms are not DP because they can do weird things on a
p-fraction of the samples

Example: Output “strange” on one sample, “normal” otherwise

Theorem: Let M: X™ — R be (B, €,6)-PG. Define M’ oninput S € X",
1. draw sample T € X" i.i.d. from S with replacement

2. output M(T)
Then M"is (4€,166 + 23)-DP.




PG implies DP...sort of

PG mechanisms are not DP because they can do weird things on a
f-fraction of the samples

Example: Output “strange” on one sample, “normal” otherwise

Theorem: Let M: X™ — R be (f3,€,6)-PG. Define M’ oninput S € X",
1. draw sample T € X™ i.i.d. from S with replacement

2. output M(T)
Then M' is (4€,168 + 2[3)-DP.

LProblems that are solvable under PG are also solvable J
under DP




Notions of generalization

* Robust generalization
“no adversary can use output to find a hypothesis that overfits”

* Differential privacy [DMNS ‘06]

“similar samples should have the same output”

* Perfect generalization
“output reveals nothing about the sample”
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