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False discovery occurs when you make conclusions
based on your data that don’t generalize to the population.
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Today

» Computational barriers to preventing false
discovery in interactive data analysis

* Computational hardness results
* Information-theoretic (minimax) lower bounds

* An adversarial perspective on false discovery in
interactive data analysis



Today

» Computational barriers to preventing false
discovery in interactive data analysis

* Computational hardness results
* Information-theoretic (minimax) lower bounds
* A language barrier!?

* An adversarial perspective on false discovery in
interactive data analysis



Step one: admit you have a problem...and formalize it.



Statistical Query Model (Kearns 93)
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; data scientist
Population P over {1} wants to study P

Goal: estimate the answers to k,
adaptively chosen statistical queries on P

“false discovery” occurs when the answer is inaccurate

Statistical Queries

* specified by a predicate q: {x1}¢ = {£I}
* true answer q(P) = mean of q over P

* an answer a is accurate if [a - q(P)| < €



Statistical Query Model (Kearns 93)
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Q, a2 = q2(S) X
Dataset S ces data scientist

Population P over {+1}¢

n i.i.d. samples from P wants to study P

Goal: estimate the answers to k,
adaptively chosen statistical queries on P

“false discovery” occurs when the answer is inaccurate

What if we use the empirical answer

Statistical Queries
Q from the sample!?

* specified by a predicate q: {x1}¢ = {£I}
* true answer q(P) = mean of q over P e empirical answer q(S) = mean of q over S

* an answer a is accurate if [a - q(P)| < €



Non-Interactive Queries are Easy

Easy Theorem (well known)

Y 4

If the queries qi,..,qk are fixed before S is drawn, then whp over S

9:(5) - i (P < o( o8k )

e Can answer nearly 2" queries with non-trivial accuracy

Proof Sketch:
Apply your favorite tail bound for sums of independent random variables

+ Union Bound.

Can fail spectacularly when the queries
can be chosen adaptively!



Overfitting with Adaptive Queries

Fact
If the queries qi,..,qkx can be chosen adaptively, then it could be that

19:(5) — q:(P) >Q( 5)

n

» Cannot guarantee non-trivial accuracy for more than k = O(n) queries.

Proof Sketch:

Next slide.



Overfitting with Adaptive Queries

& P
5 q1(P)
i a1 = qi(S) >
,,,,,,,, P
Ay < q2(P)
Q’ a2 = q2(5) S
. : : o data scientist
Population P is uniform Dataset S, asks random queries
on{l,2,...,2n} n i.i.d. samples from P q:[2n] = {0, 1}

Adversary can ask O(n) random statistical queries, get the empirical
answer to each one, then reconstruct S exactly.

Once you recover S exactly, ask the query

-1 i S
q(x) = | i;"'fo:S Note, q(S) - q(P) = I.

Can only answer k = n queries!



Step two: appeal to a higher power for help.



Statistical Query Model (Kearns ’93)
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: data scientist
: Mechanism
Population P over {|}d Dataset S,
P ) n i.i.d. samples from P M(S) wants to study P

Goal: estimate the answers to k,
adaptively chosen statistical queries on P

“false discovery” occurs when the answer is inaccurate

Statistical Queries

* specified by a predicate q: {x1}¢ = {£I}
* true answer q(P) = mean of q over P e empirical answer q(S) = mean of q over S

* an answer a is accurate if [a - q(P)| < €

* Mis accurate if, for every population P, every analyst, every sequence qy,...,qx
every answer aj,..,ak is accurate for P

Today’s Goal: “universal mechanisms” to prevent false discovery



Differential Privacy and Adaptive Queries

Theorem (DFHPRR’15a, BNSSSU’ 15) Let M be a mechanism such that

|) M is g-accurate with respect to the empirical answer

for every S, every adaptive sequence of k queries, qji,..,qk,
M(S) answers with ay,...,ak such that aj = qi(S) £ € for i=1,..,k

2) Mis (&,0)-differentially private for the sample

Then,
Pr( maxi|qi(P) - ail < O(g) ) = | - O(d/¥).



Step four: make a searching and fearless
inventory of our DP algorithms



Differential Privacy and Adaptive Queries

Theorem (DFHPRR’15, BNSSSU’ [ 5) Let M be a mechanism such that

|) M is €-accurate with respect to the empirical answer

2) Mis (£,0)-differentially private for the sample.
Then, Pr( |q(P) -a] < O(g) ) = | - O(0/¢).

Gaussian Mechanism: PN\

Answer ai(S) = qi(S) + N(O, €2), for € = k'/4/n!2

|) is € accurate wrt the empirical answer 2 R\

2) is (€,0)-DP for negligible © “ ai(;) vs. ai(Sl’)

Corollary There is a simple, computationally efficient mechanism that is
accurate for k = n? queries.




Differential Privacy and Adaptive Queries

Theorem (DFHPRR’15, BNSSSU’ [ 5) Let M be a mechanism such that

|) M is €-accurate with respect to the empirical answer

2) Mis (£,0)-differentially private for the sample.
Then, Pr( |q(P) -a] < O(g) ) = | - O(0/¢).

Private Multiplicative VWeights (HR’|0)

There exists a (1/100, d)-DP algorithm that is (1/100)-accurate wrt to the
empirical answer for k = exp(n/d'’?) adaptively chosen queries. The

mechanism runs in time polynomial in n, 29 per query.

Corollary There is an accurate mechanism for k = exp(n/d'’?) queries
that runs in time polynomial in n, 29 per query.



Step seven: ask the higher power to remove our shortcomings



Negative Results

Theorem (Computational Version) (HU’ 14, SU’|5):

If one-way functions exist and d = wW(log n), there is no computationally
efficient mechanism* that answers more than k = O(n?) arbitrary
adaptively chosen queries.

Theorem (Information-Theoretic Version) (HU’ 14, SU’ | 5):

If d > k, then there is no mechanism, efficient or not, that answers more
than k = O(n?) arbitrary adaptively chosen queries.

* Universal mechanisms are severely limited

* A “full employment theorem” for we who prevent false discovery!

* Preventing false discovery will require detailed understanding

*computationally efficient = answers each query in time polynomial in |S|=nd



Our Approach (v.1): Blatant Non-Privacy
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Population P over {+1}4 Dataset S, Mechanism - adversarial data
n i.i.d. samples from P M(S) ) scientist chooses P,
\ — asks adversarial queries

l

Any such mechanism is “blatantly non-private.” "
Much stronger than —(differential privacy). accuracy will imply that

the adversary
can reconstruct S

Once she has S, she can ask a “killer” query such that |q(P) - q(S)| is large.

Not as trivial as it sounds, but | wouldn’t call it non-trivial.



Our Approach (v.2): Estimation with Auxiliary Info

in both cases, she gets auxiliary info aux(P)
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Population P over {x1}¢

/c|:ta scientist wants to

study P
Case 2: she interacts with a
mechanism M that accurately answers
k=O(n?) queries on P

Approach: find a problem that she can solve in case 2, but not in case |
—> cannot implement the mechanism given n samples.



Our Approach (v.2): Estimation with Auxiliary Info

in both cases, she gets auxiliary info aux(P) | B = aux(P) is a random set
AcBc{z1}9, |B|=12n

/cI:ta scientist wants to

learn the support of P

Case 2: she interacts with a
[ P is uniform on a j mechanism M that accurately answers [ Goal is to output a set C, j
r n

Population P over {x1}¢

andom set Ac{x1}9, |A|=4 k=O(n?) queries on P |C|=3n, |[CNA| = 2n

* Case |:Pr[she succeeds] < exp(-n/100). Probability is over A, B, C

* Case 2:If M is computationally efficient, or d > k,
Pr[she succeeds] = |. Probability is over A,B,C,M (hard half)



Negative Results

Theorem (Computational Version) (HU’ 14, SU’|5):

If secure crypto exists* and n = 2°(9)

then there is no computationally efficient mechanism™

that gives accurate answers* to more than k = O(n?) arbitrary adaptively
chosen queries.

Theorem (Information-Theoretic Version) (HU’ 14, SU’ | 5):

If d >k,

then there is no mechanism, efficient or not,

that gives accurate answers* to more than k = O(n?) arbitrary adaptively
chosen queries.

*secure crypto = exponentially hard one-way functions
*computationally efficient = answers each query in time polynomial in |S|=nd

*accurate answers = can distinguish q(P) = | from q(P) = 0 (very weak!)



Our Approach (v.2): Estimation with Auxiliary Info

in both cases, she gets auxiliary info aux(P) | B = aux(P) is a random set
AcBc{z1}9, |B|=12n
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/Case |: she gets n iid samples from P
Population P over {x1}¢ \ /
data scientist wants to
learn the support of P

Case 2: she interacts with a
P is uniform on a mechanism M that accurately answers Goal is to output a set C,
random set Ac{x1}9, |A|=4n k=O(n?) queries on P |C|=3n, |[CNA| = 2n

* Both approaches are very tailored to universal mechanisms.
* Queries to the oracle are complex
* Scientist gets auxiliary info that is unknown to the mechanism

* Open question: Can we prove negative results that don’t rely on “secret” auxiliary information.



Main Tool: Fingerprinting Codes (Boneh-Shaw’95, Tardos’03)

A versatile tool for understanding the limits of learning in high dimensions.

accuracy LB for
DP contingency tables accuracy LB .for BlE
online maximum

[BUV’ 4] accuracy LB for DP

/ PCA [DTTZ'14]
accuracy FPCs~ /
>

LB for interactive data accuracy LB for high accuracy LB for DP

analysis [HU'14,5U] dimensional DP mean regression [BST"14]
[BUV’14,SU’° 5]
+interaction “// &
hardness of +cryptography computational
interactive data analysis hardness of interactive AEDIESS

[HU14SU] o . DPUI3] of DP [DNRRV'09]

‘_——




Main Tool: Fingerprinting Codes (Boneh-Shaw’95, Tardos’03)

| want to preview my new
== movie:“The Fault in Our

Statistics”

...but I’'m worried
about piracy



Main Tool: Fingerprinting Codes (Boneh-Shaw’95, Tardos’03)
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Gen outputs
N patterns of
watermarks

(Gen, Trace)

Critics form Coalition releases  Trace outputs a
a coalition a pirated film colluder in S

10001 F* Trace(F*) =
110100 ! 7
2911000 — |950 .28 —
w® (10000
Clit1o1 F* close to the F* depends
N users coalition S “average” only on S
O(n?%) marks of size n
. _ 4
_ . F =
users = support o coalition = o Ensured by
mechanism’s



Overfitting with Fingerprinting Codes

Population P is uniform
on{l,2,...,N}

) a1(P)

< ar = qi(S)

Ay < q2(P)

Q’ a2 = q2(S)
Dataset S,

n i.i.d. samples from P

Random fingerprinting code matrix
one query = one column
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N .00 0O 0 .0

3(4F) =
() =
3(Qup) =
3(w) =
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data scientist asks

queries using the

fingerprinting code
q:[N] = {£1}

applies Trace to
the answers

accurate answer is

close to the average



Overfitting with Fingerprinting Codes

Population P is uniform

on{l,2,...,N}

&)
- 2 S
<) =qi(S) R
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Q, a2 = q2(S) R
Dataset S data scientist asks

n i.i.d. samples from P

Random fingerprinting code matrix
one query = one column

R

q3
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11101

N .00 0O 0 .0
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0
1
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queries using the
fingerprinting code

q:[N] = {£1}

applles Trace to
the answers

Q: how do we ensure that the
answers only depend on the sample?

A: use cryptography to “blind”

the queries

accurate answer is
close to the average



Negative Results

Theorem (Computational Version) (HU’ 14, SU’|5):

If one-way functions exist and d = wW(log n), there is no computationally
efficient mechanism* that answers more than k = O(n?) arbitrary
adaptively chosen queries.

Theorem (Information-Theoretic Version) (HU’ 14, SU’ | 5):

If d > k, then there is no mechanism, efficient or not, that answers more
than k = O(n?) arbitrary adaptively chosen queries.

*computationally efficient = answers each query in time polynomial in |S|=nd



Step eleven: thank your audience!

Step twelve: take questions!



