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Popular and academic articles report on an           
increasing number of false discoveries in empirical science. 

False discovery occurs when you make conclusions 
based on your data that don’t generalize to the population.



Today

• Computational barriers to preventing false 
discovery in interactive data analysis
• Computational hardness results
• Information-theoretic (minimax) lower bounds

• An adversarial perspective on false discovery in 
interactive data analysis



Today

• Computational barriers to preventing false 
discovery in interactive data analysis
• Computational hardness results
• Information-theoretic (minimax) lower bounds
• A language barrier?

• An adversarial perspective on false discovery in 
interactive data analysis



Step one: admit you have a problem…and formalize it.



Statistical Query Model (Kearns ’93)

data scientist
wants to study PPopulation P over {±1}d

Statistical Queries

• specified by a predicate q: {±1}d → {±1}

• true answer q(P) = mean of q over P

• an answer a is accurate if |a - q(P)| ≤ ε

q1(P)

a1

q2(P)

a2

…

Goal: estimate the answers to k, 
adaptively chosen statistical queries on P

“false discovery” occurs when the answer is inaccurate



data scientist
wants to study PPopulation P over {±1}d

Goal: estimate the answers to k, 
adaptively chosen statistical queries on P

q1(P)

a1 = q1(S)

q2(P)

a2 = q2(S)

…

“false discovery” occurs when the answer is inaccurate

• empirical answer q(S) = mean of q over S

Dataset S, 
n i.i.d. samples from P

Statistical Queries

• specified by a predicate q: {±1}d → {±1}

• true answer q(P) = mean of q over P

• an answer a is accurate if |a - q(P)| ≤ ε

What if we use the empirical answer
from the sample?

Statistical Query Model (Kearns ’93)



Non-Interactive Queries are Easy

Proof Sketch: 
Apply your favorite tail bound for sums of independent random variables
+ Union Bound.

Can fail spectacularly when the queries
can be chosen adaptively!

If the queries q1,..,qk are fixed before S is drawn, then whp over S

Easy Theorem (well known)

• Can answer nearly 2n queries with non-trivial accuracy
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Overfitting with Adaptive Queries

If the queries q1,..,qk can be chosen adaptively, then it could be that
Fact

• Cannot guarantee non-trivial accuracy for more than k = O(n) queries.

|qi (S)� qi (P)| >⌦
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Proof Sketch:  
Next slide.



data scientist
asks random queries 

q: [2n] → {0,1}

Population P is uniform 
on {1, 2,…, 2n}

q1(P)

a1 = q1(S)

q2(P)

a2 = q2(S)

…
Dataset S, 

n i.i.d. samples from P

Overfitting with Adaptive Queries

Adversary can ask O(n) random statistical queries, get the empirical 
answer to each one, then reconstruct S exactly.

Once you recover S exactly, ask the query

   q(x) =
-1 if x ∈ S
1 if x ∉ S Note, q(S) - q(P) = 1.

Can only answer k ≲ n queries!



Step two: appeal to a higher power for help.



Statistical Query Model (Kearns ’93)

data scientist
wants to study PPopulation P over {±1}d

Goal: estimate the answers to k, 
adaptively chosen statistical queries on P

q1(P)

a1

q2(P)

a2

…

“false discovery” occurs when the answer is inaccurate

• empirical answer q(S) = mean of q over S

Dataset S, 
n i.i.d. samples from P

Statistical Queries

• specified by a predicate q: {±1}d → {±1}

• true answer q(P) = mean of q over P

• an answer a is accurate if |a - q(P)| ≤ ε

Mechanism
M(S)

Today’s Goal: “universal mechanisms” to prevent false discovery 

• M is accurate if, for every population P, every analyst, every sequence q1,…,qk, 
every answer a1,..,ak is accurate for P



Differential Privacy and Adaptive Queries

Theorem (DFHPRR’15a, BNSSSU’15) Let M be a mechanism such that

1) M is ε-accurate with respect to the empirical answer 
for every S, every adaptive sequence of k queries, q1,..,qk,                  
M(S) answers with a1,…,ak such that ai = qi(S) ± ε for i=1,..,k

2) M is (ε,δ)-differentially private for the sample 

Then, 
Pr(  maxi |qi(P) - ai| ≤ O(ε) ) ≥ 1 - O(δ/ε).



Step four: make a searching and fearless
inventory of our DP algorithms



Differential Privacy and Adaptive Queries

Theorem (DFHPRR’15, BNSSSU’15) Let M be a mechanism such that

1) M is ε-accurate with respect to the empirical answer

2) M is (ε,δ)-differentially private for the sample. 

Then, Pr(  |q(P) - a| ≤ O(ε) ) ≥ 1 - O(δ/ε).

Gaussian Mechanism:  

Answer ai(S) = qi(S) + N(0, ε2), for ε ≈ k1/4/n1/2

1) is ε accurate wrt the empirical answer

2) is (ε,δ)-DP for negligible δ ai(S) vs. ai(S’)

Corollary  There is a simple, computationally efficient mechanism that is 
accurate for k ≳ n2 queries.



Differential Privacy and Adaptive Queries

Theorem (DFHPRR’15, BNSSSU’15) Let M be a mechanism such that

1) M is ε-accurate with respect to the empirical answer

2) M is (ε,δ)-differentially private for the sample. 

Then, Pr(  |q(P) - a| ≤ O(ε) ) ≥ 1 - O(δ/ε).

Private Multiplicative Weights (HR’10)

There exists a (1/100, δ)-DP algorithm that is (1/100)-accurate wrt to the 
empirical answer for k ≳ exp(n/d1/2) adaptively chosen queries.  The 
mechanism runs in time polynomial in n, 2d per query.

Corollary  There is an accurate mechanism for k ≳ exp(n/d1/2) queries 
that runs in time polynomial in n, 2d per query.



Step seven: ask the higher power to remove our shortcomings



Negative Results

Theorem (Information-Theoretic Version) (HU’14, SU’15):

If d > k, then there is no mechanism, efficient or not, that answers more 
than k = Õ(n2) arbitrary adaptively chosen queries.

• Universal mechanisms are severely limited

• A “full employment theorem” for we who prevent false discovery!
• Preventing false discovery will require detailed understanding

Theorem (Computational Version) (HU’14, SU’15):

If one-way functions exist and d = ω(log n), there is no computationally 
efficient mechanism* that answers more than k = Õ(n2) arbitrary 
adaptively chosen queries.

*computationally efficient ≈ answers each query in time polynomial in |S|=nd



Our Approach (v.1): Blatant Non-Privacy

adversarial data 
scientist chooses P,

asks adversarial queries

Population P over {±1}d

accuracy will imply that
the adversary

can reconstruct S

Once she has S, she can ask a “killer” query such that |q(P) - q(S)| is large.

Not as trivial as it sounds, but I wouldn’t call it non-trivial.

q1(P)?

a1

q2(P)?

a2

…Dataset S, 
n i.i.d. samples from P

Mechanism
M(S)

Any such mechanism is “blatantly non-private.”
Much stronger than ¬(differential privacy).



Our Approach (v.2): Estimation with Auxiliary Info

Population P over {±1}d

data scientist wants to 
study P

in both cases, she gets auxiliary info aux(P)

Case 1: she gets n iid samples from P

Approach: find a problem that she can solve in case 2, but not in case 1
⟹ cannot implement the mechanism given n samples.

Case 2:  she interacts with a
mechanism M that accurately answers

k=Õ(n2) queries on P



Our Approach (v.2): Estimation with Auxiliary Info

Population P over {±1}d

data scientist wants to 
learn the support of P

in both cases, she gets auxiliary info aux(P)

Case 1: she gets n iid samples from P

Case 2:  she interacts with a
mechanism M that accurately answers

k=Õ(n2) queries on P
P is uniform on a

random set A⊂{±1}d, |A|=4n

B = aux(P) is a random set
A⊂B⊂{±1}d, |B|=12n

• Case 1: Pr[she succeeds] ≤ exp(-n/100).  Probability is over A, B, C 

• Case 2: If M is computationally efficient, or d > k,                                            
Pr[she succeeds] ≈ 1.  Probability is over A,B,C,M (hard half)

Goal is to output a set C, 
|C|=3n, |C⋂A| ≥ 2n



Negative Results

Theorem (Information-Theoretic Version) (HU’14, SU’15):

If d > k,                                                                                          
then there is no mechanism, efficient or not,                                       
that gives accurate answers* to more than k = O(n2) arbitrary adaptively 
chosen queries.

Theorem (Computational Version) (HU’14, SU’15):

If secure crypto exists* and n = 2o(d)                                                    
then there is no computationally efficient mechanism*                        
that gives accurate answers* to more than k = O(n2) arbitrary adaptively 
chosen queries.

*computationally efficient ≈ answers each query in time polynomial in |S|=nd

*secure crypto ≈ exponentially hard one-way functions

*accurate answers ≈ can distinguish q(P) = 1 from q(P) = 0 (very weak!)



Our Approach (v.2): Estimation with Auxiliary Info

Population P over {±1}d

data scientist wants to 
learn the support of P

in both cases, she gets auxiliary info aux(P)

Case 1: she gets n iid samples from P

Case 2:  she interacts with a
mechanism M that accurately answers

k=Õ(n2) queries on P
P is uniform on a

random set A⊂{±1}d, |A|=4n

B = aux(P) is a random set
A⊂B⊂{±1}d, |B|=12n

• Both approaches are very tailored to universal mechanisms.
• Queries to the oracle are complex
• Scientist gets auxiliary info that is unknown to the mechanism

• Open question: Can we prove negative results that don’t rely on “secret” auxiliary information.

Goal is to output a set C, 
|C|=3n, |C⋂A| ≥ 2n



A versatile tool for understanding the limits of learning in high dimensions.

FPCs≈ 
accuracy LB for high 
dimensional DP mean 

[BUV’14,SU’15]

computational 
hardness of interactive 

DP [U’13]

accuracy LB for DP 
PCA [DTTZ’14]

accuracy 
LB for interactive data 
analysis [HU’14,SU]

hardness of 
interactive data analysis 

[HU’14,SU]

+cryptography

+interaction

accuracy LB for 
DP contingency tables 

[BUV’14]

+amplification

accuracy LB for DP 
regression [BST’14]

accuracy LB for DP 
online maximum

Hardness
of DP [DNRRV’09]

Main Tool: Fingerprinting Codes (Boneh-Shaw’95, Tardos’03)



...but I’m worried 
about piracy

I want to preview my new 
movie: “The Fault in Our 

Statistics”

Main Tool: Fingerprinting Codes (Boneh-Shaw’95, Tardos’03)



(Gen, Trace)

Critics form 
a coalition

1 0 0 0 1

1 1 0 0 0

1 1 1 0 1

coalition S
of size n

Coalition releases 
a pirated film

.9 .5 0 .2 .8

F*

Trace outputs a 
colluder in S

Trace(F*) = 

F* depends
only on S

F* close to the 
“average”

Gen outputs 
N patterns of 
watermarks

N users
Õ(n2) marks

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1 1 1 0 1

Main Tool: Fingerprinting Codes (Boneh-Shaw’95, Tardos’03)

users = support of P coalition =
users in sample

F* =
mechanism’s 

answers

Ensured by 
restrictions on Mone col = one query



Population P is uniform 
on {1, 2,…, N}

q1(P)

a1 = q1(S)

q2(P)

a2 = q2(S)

…
Dataset S, 

n i.i.d. samples from P

Overfitting with Fingerprinting Codes

Random fingerprinting code matrix
one query = one column

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1 1 1 0 1

0

1

0

0

1

q3

q3(    ) =
q3(    ) =
q3(    ) =
q3(    ) =
q3(    ) =

q3

0.38
accurate answer is 
close to the average

data scientist asks 
queries using the

 fingerprinting code
q: [N] → {±1}

…
applies Trace to

the answers



Population P is uniform 
on {1, 2,…, N}

q1(P)

a1 = q1(S)

q2(P)

a2 = q2(S)

…
Dataset S, 

n i.i.d. samples from P

Overfitting with Fingerprinting Codes

Random fingerprinting code matrix
one query = one column

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1 1 1 0 1

0

1

0

0

1

q3

q3(    ) =
q3(    ) =
q3(    ) =
q3(    ) =
q3(    ) =

q3

0.38
accurate answer is 
close to the average

Q: how do we ensure that the
answers only depend on the sample?

A: use cryptography to “blind”
the queries

data scientist asks 
queries using the

 fingerprinting code
q: [N] → {±1}

…
applies Trace to

the answers



Negative Results

Theorem (Information-Theoretic Version) (HU’14, SU’15):

If d > k, then there is no mechanism, efficient or not, that answers more 
than k = Õ(n2) arbitrary adaptively chosen queries.

Theorem (Computational Version) (HU’14, SU’15):

If one-way functions exist and d = ω(log n), there is no computationally 
efficient mechanism* that answers more than k = Õ(n2) arbitrary 
adaptively chosen queries.

*computationally efficient ≈ answers each query in time polynomial in |S|=nd



Step eleven: thank your audience!

Step twelve: take questions!


