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Outline

• Theme: Role of Stability in Learning

• Story: Necessary and sufficient condition for learnability

• Characterizing (statistical) learnability
– Stability as the master property

• Convex Problems
– Strong convexity as the master property 

• Stability in online learning
– From Stability to Online Mirror Descent



The General Learning Setting

min
𝑤∈𝒲

𝐹 𝑤 = 𝐸𝑧~𝒟 𝑓 𝑤, 𝑧

given an iid sample 𝑧1, 𝑧2, … , 𝑧𝑚 ∼ 𝒟

• Known objective function 𝑓: 𝒲 × Ω → ℝ,
unknown distribution 𝒟 over 𝑍 ∈ Ω

• Problem specified by 𝒲, Ω, 𝑓 is learnable if there exists a learning 

rule  𝑤(𝑧1, … , 𝑧𝑚) s.t. for every 𝜖 > 0 and large enough sample size 
𝑚(𝜖), for any distribution D:

𝔼𝑧1,…,𝑧𝑚∼𝒟 𝐹  𝑤 ≤ inf
𝑤∈𝒲

𝐹 𝑤 + 𝜖

Vapnik95

aka Stochastic Optimization

𝐹(𝑤∗)



General Learning: Examples

• Supervised learning:
z = (x,y)
w specifies a perdictor hw: X ! Y
f( w ; (x,y) ) = loss(hw(x),y)
e.g. linear prediction: 𝑓 𝑤 ; 𝑥, 𝑦 = 𝑙𝑜𝑠𝑠 𝑤, 𝑥 , 𝑦

• Unsupervised learning, e.g. k-means clustering:
 = x 2 Rd

w = ([1],…,[k]) 2 Rd£k specifies k cluster centers
f( ([1],…,[k]) ; x ) = minj |[j]-x|2

• Density estimation:
w specifies probability density pw(x)
f( w ; x ) = -log pw(x)

• Optimization in uncertain environment, e.g.:
z = traffic delays on each road segment
w = route chosen (indicator over road segments in route)
f( w ; z ) = hw,zi = total delay along route

Minimize F(w)=Ez[f(w;z)] based on sample z1,z2,…,zn



sup
w2W

¯̄
¯F (w)¡ F̂ (w)

¯̄
¯ n!1
¡! 0Uniform convergence:

{ hw | w 2 W } has finite fat-shattering dimension

F (ŵ)
n!1
¡! F (w?)

Learnable using ERM: 

ŵ = argmin F̂ (w)

 𝑤 = arg min
𝑤

 𝐹(𝑤) 𝐹 𝑤 =
1

𝑚
 

𝑖

𝑓 𝑤, 𝑧𝑖



F ( ~w)
n!1
¡! F (w?)Learnable (using some rule):

sup
w2W

¯̄
¯F (w)¡ F̂ (w)

¯̄
¯ n!1
¡! 0Uniform convergence:

{ hw | w 2 W } has finite fat-shattering dimension

Supervised Classification

F (ŵ)
n!1
¡! F (w?)

Learnable using ERM: 

ŵ = argmin F̂ (w)

f(w;(x,y)) = loss(hw(x),y):

[Alon

Ben-David

Cesa-Bianchi

Haussler 93]



Beyond Supervised Learning

• Supervised learning:
𝑓 𝑤, 𝑥, 𝑦 = 𝑙𝑜𝑠𝑠(ℎ𝑤 𝑥 , 𝑦)

– Combinatorial necessary and sufficient condition of learning

– Uniform convergence necessary and sufficient for learning

– ERM universal (if learnable, can do it with ERM)

• General learning / stochastic optimization:
𝑓(𝑤, 𝑧)

????



Online Learning (Optimization)

• Known function 𝑓 ⋅,⋅

• Unknown sequence 𝑧1, 𝑧2, …

• Online learning rule: 𝑤𝑖(𝑧1, … , 𝑧𝑖−1)

• Goal:  𝑖 𝑓(𝑤𝑖 , 𝑧𝑖)

Differences vs stochastic setting:

• Any sequence—not necessarily iid

• No distinction between “train” and “test”

w1 w2 w3
….

f(¢;z1) f(¢;z2) f(¢;z3)

Learner:

Adversary:



Online and Stochastic Regret

• Online Regret: for any sequence,

1

𝑚
 

𝑖=1

𝑚

𝑓(𝑤𝑖(𝑧1, … , 𝑧𝑖−1), 𝑧𝑖) ≤ inf
𝑤∈𝒲

1

𝑚
 

𝑖=1

𝑚

𝑓 𝑤, 𝑧𝑖 + 𝑅𝑒𝑔(𝑚)

• Statistical Regret: for any distribution 𝒟,

𝔼𝑧1,…,𝑧𝑚∼𝒟 𝐹𝒟  𝑤 𝑧1, … , 𝑧𝑚 ≤ inf
𝑤∈𝒲

𝐹𝒟 𝑤 + 𝜖(𝑚)

• Online-To-Batch:

 𝑤(𝑧1, … , 𝑧𝑚) = 𝑤𝑖 with prob 1/𝑚

𝔼 𝐹  𝑤 ≤ 𝐹 𝑤∗ + 𝑅𝑒𝑔 𝑚

𝐹 𝑤∗

 𝐹  𝑤



F ( ~w)
n!1
¡! F (w?)Learnable (using some rule):

sup
w2W

¯̄
¯F (w)¡ F̂ (w)

¯̄
¯ n!1
¡! 0Uniform convergence:

{ hw | w 2 W } has finite fat-shattering dimension

Supervised Classification

F (ŵ)
n!1
¡! F (w?)

Learnable using ERM: 

ŵ = argmin F̂ (w)

f(w;(x,y)) = loss(hw(x),y):

[Alon

Ben-David

Cesa-Bianchi

Haussler 93]

Online

Learnable



Convex Lipschitz Problems

• 𝒲 convex bounded subset of Hilbert space (or ℝ𝑑)

∀𝑤∈𝒲 𝑤 2 ≤ 𝑩

• For each 𝑧, 𝑓(𝑤, 𝑧) convex Lipschitz w.r.t 𝑤
𝑓 𝑤, 𝑧 − 𝑓 𝑤′, 𝑧 ≤ 𝑳 ⋅ 𝑤 − 𝑤′

2

• E.g., 𝑓 𝑤, 𝑥, 𝑦 = 𝑙𝑜𝑠𝑠( 𝑤, 𝑥 ; 𝑦), 𝑙𝑜𝑠𝑠′ ≤ 1

𝑥 2 ≤ 𝐿

• Online Gradient Descent: 𝑅𝑒𝑔 𝑚 ≤
𝐵2𝐿2

𝑚

• Stochastic Setting:

– For generalized linear (including supervised): matches ERM rate

– For general Convex Lipschitz Problems?

• Learnable via online-to-batch (SGD)

• Using ERM?



Center of Mass with Missing Data

𝑓 𝑤, 𝐼, 𝑥𝐼 =  𝑖∈𝐼 𝑤 𝑖 − 𝑥 𝑖 2

𝐼 ⊆ 𝑑 , 𝑥 𝑖 , 𝑖 ∈ 𝐼, 𝑥 ≤ 1

Consider 𝑃 𝑖 ∈ 𝐼 = 1/2 independently for all 𝑖, 𝑥 = 0

If d>>2m (think of d=1) then with high probability there 

exists a coordinate j that is never seen in the sample, 

i.e. 𝑗 ∉ 𝐼 for  all i=1..m

F̂ (ej) = 0 F (ej) = 1=2

sup
w2W

¯̄
¯F (w)¡ F̂ (w)

¯̄
¯ ¸ 1=2

No uniform convergence!

ej is an empirical minimizer with

F(ej) = ½, far from F(w*)=F(0)=0

𝑤 ∈ ℝ𝑑, 𝑤 ≤ 1



F ( ~w)
n!1
¡! F (w?)Learnable (using some rule):

Learnable with ERM: F (ŵ)
n!1
¡! F (w?)

sup
w2W

¯̄
¯F (w)¡ F̂ (w)

¯̄
¯ n!1
¡! 0Uniform convergence:

{ z!f(w;z) | w 2 W } has finite fat-shattering dimension
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Stochastic Convex Optimization

• Empirical minimization might not be consistent

• Learnable using specific procedural rule 

(online-to-batch conversion of online gradient 

descent)

• ??????????



Strongly Convex Objectives

𝑓(𝑤, 𝑧) is 𝜆-strongly convex in 𝑤 iff:

𝑓
𝑤 + 𝑤′

2
, 𝑧 ≤

𝑓 𝑤, 𝑧 + 𝑓 𝑤′, 𝑧

2
−

𝜆

8
𝑤 − 𝑤′

2
2

Equivalent to 𝛻𝑤
2𝑓 𝑤, 𝑧 ≽ 𝜆

If 𝑓(𝑤, 𝑧) is 𝜆-convex and 𝐿-Lipschitz w.r.t. 𝑤

• Online Gradient Descent [Hazan Kalai Kale Agarwal 2006]

𝑅𝑒𝑔 ≤ 𝑂
𝐿2log(𝑚)

𝜆𝑚

• Empirical Risk Minimization:

𝔼 𝐹  𝑤 ≤ 𝐹 𝑤∗ + 𝑂
𝐿2

𝜆𝑚

Stochastic Setting?

ERM?



Strong Convexity and Stability

• Definition: rule  𝑤(𝑧1, … 𝑧𝑚) is 𝛽(𝑚)-stable if:

𝑓  𝑤 𝑧1, … , 𝑧𝑚−1 , 𝑧𝑚 − 𝑓  𝑤 𝑧1, … , 𝑧𝑚 , 𝑧𝑚 ≤ 𝛽(𝑚)

• Symmetric  𝑤 is 𝛽−stable ⇒ 𝔼 𝐹  𝑤𝑚−1 ≤ 𝔼  𝐹  𝑤𝑚 + 𝛽

• 𝑓 is 𝜆-strongly convex and 𝐿-Lipschitz ⇒

𝑓  𝑤 𝑧1, … , 𝑧𝑚−1 , 𝑧𝑚 − 𝑓  𝑤 𝑧1, … , 𝑧𝑚 , 𝑧𝑚 ≤ 𝛽 =
4𝐿2

𝜆𝑚

• Conclusion:

𝔼 𝐹  𝑤 ≤ 𝛽 𝑚

For ERM: 𝔼  𝐹  𝑤 ≤ 𝔼  𝐹 𝑤∗ = 𝐹 𝑤∗



Empirical Minimization Consistent, 

but is there Uniform Convergence?

For j that is never seen in the sample:

sup
w2W

¯̄
¯F (w)¡ F̂ (w)

¯̄
¯ ¸ 1=2No uniform convergence:

𝑓 𝑤, 𝐼, 𝑥𝐼 =  𝑖∈𝐼 𝑤 𝑖 − 𝑥 𝑖 2 + 𝜆 𝑤 2
2

𝐼 ⊆ 𝑑 , 𝑥 𝑖 , 𝑖 ∈ 𝐼, 𝑥 ≤ 1

Consider 𝑃 𝑖 ∈ 𝐼 = 1/2 independently for all 𝑖, 𝑥 = 0

𝑤 ∈ ℝ𝑑, 𝑤 ≤ 1

 𝐹 𝑡𝑒𝑗 = 𝜆𝑡2 𝐹 𝑡𝑒𝑗 =
1

2
𝑡 + 𝜆𝑡2



F ( ~w)
n!1
¡! F (w?)Solvable (using some algorithm):

Empirical minimizer is consistent: F (ŵ)
n!1
¡! F (w?)

sup
w2W

¯̄
¯F (w)¡ F̂ (w)

¯̄
¯ n!1
¡! 0Uniform convergence:

{ z!f(w;z) | w 2 W } has finite fat-shattering dimension
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Back to Weak Convexity
𝑓(𝑤, 𝑧) 𝐿-Lipschitz (and convex), 𝑤 2 ≤ 𝐵

• Use Regularized ERM:

 𝑤𝜆 = arg min
𝑤∈𝒲

 𝐹 𝑤 +
𝜆

2
𝑤 2

2

• Setting 𝜆 =
𝐿2

𝐵2𝑚
:

𝔼 𝐹  𝑤𝜆 ≤ 𝐹 𝑤∗ + 𝑂
𝐿2𝐵2

𝑚

• Key: strongly convex regularizer ensures stability



The Role of Regularization

• Structure Risk Minimization view:
– Adding regularization term effectively constrains domain 

to lower complexity domain 𝒲𝑟 = 𝑤 | 𝑤 ≤ 𝑟

– Learning guarantees (e.g. for SVMs, LASSO) are 
actually for empirical minimization inside 𝒲𝑟, and are 
based on uniform convergence in 𝒲𝑟.

• In our case:
– No uniform convergence in 𝒲𝑟, for any r>0

– No uniform convergence even of regularized loss

– Cannot solve stochastic optimization problem by 
restricting to 𝒲𝑟, for any 𝑟.

– What regularization buys is stability



Stability Characterizes Learnability

Learnable

Learnable with 

ERM

Uniform 

Convergence

Finite fat-shat 

dimension

∃ Stable 

AERM

Theorem: Learnable with (symmetric) ERM  𝑤 iff ∀𝒟
𝔼 𝑓  𝑤 𝑧1, … , 𝑧𝑚−1 , 𝑧𝑚 − 𝑓  𝑤 𝑧1, … , 𝑧𝑚 , 𝑧𝑚 ≤ 𝛽(𝑚)

For some 𝛽 𝑚 → 0

Theorem: Learnable iff ∃ symetric  𝑤 s.t. ∀𝒟:

•  𝑤 is an “almost ERM”:

𝔼  𝐹  𝑤 −  𝐹  𝑤 ≤ 𝜖(𝑚)

•  𝑤 is stable:
𝔼 𝑓  𝑤 𝑧1, … , 𝑧𝑚−1 , 𝑧𝑚 − 𝑓  𝑤 𝑧1, … , 𝑧𝑚 , 𝑧𝑚 ≤ 𝛽(𝑚)

For some 𝜖 𝑚 → 0, 𝛽 𝑚 → 0
Stable ERM

s
u

p
e

rv
is

e
d

 le
a

rn
in

g



Strong Convexity and Stability

• For any norm ‖𝑤‖:

– Ψ 𝑤 ≥ 0 is strongly convex w.r.t. 𝑤 , i.e.

Ψ
𝑤 + 𝑤′

2
≥

Ψ 𝑤 + Ψ 𝑤′

2
+

1

4
𝑤 2

– 𝑓 𝑤, 𝑧 is 𝐿-Lipschitz w.r.t. ‖𝑤‖:

𝑓 𝑤, 𝑧 − 𝑓 𝑤′, 𝑧 ≤ 𝐿 ⋅ ‖𝑤 − 𝑤′‖

  𝑤𝜆 = arg min
𝑤

 𝐹(𝑤) +
𝜆

2
Ψ(𝑤) is 

𝐿2𝜆

𝑚
-stable

• With 𝜆 =  𝐿2 Ψ 𝑤∗ 𝑚 :

𝐹  𝑤𝜆 ≤ 𝐹 𝑤∗ +
𝐿2Ψ 𝑤∗

𝑚



Convex Lipschitz Problems

• 𝒲 convex bounded subset of normed space (ℝ𝑑 or Banach space)

• For each 𝑧, 𝑓(𝑤, 𝑧) convex Lipschitz w.r.t 𝑤
𝑓 𝑤, 𝑧 − 𝑓 𝑤′, 𝑧 ≤ 𝑳 ⋅ 𝑤 − 𝑤′

• E.g., 𝑓 𝑤, 𝑥, 𝑦 = 𝑙𝑜𝑠𝑠( 𝑤, 𝑥 ; 𝑦), 𝑙𝑜𝑠𝑠′ ≤ 1

𝑥 ∗ ≤ 𝐿

• To learn: need Ψ(𝑤) strongly convex w.r.t. ‖ ⋅ ‖

𝐹  𝑤𝜆 ≤ 𝐹 𝑤∗ +
𝐿2𝐵2

𝑚
𝐵2 = sup

𝑤∈𝒲
Ψ(𝑤)

• Is this universal?

Can all Lipschitz problems (for all ‖ ⋅ ‖ and 𝒲) be learned this way?



Stability in Online Learning

• Reminder: rule  𝑤(𝑧1, … 𝑧𝑚) is 𝛽(𝑚)-stable if

𝑓  𝑤 𝑧1, … , 𝑧𝑚−1 , 𝑧𝑚 − 𝑓  𝑤 𝑧1, … , 𝑧𝑚 , 𝑧𝑚 ≤ 𝛽(𝑚)

• Follow The Leader (FTL):  𝑤𝑚 𝑧1, … , 𝑧𝑚−1 = argmin
𝑤

 𝑖=1
𝑚−1 𝑓(𝑤, 𝑧𝑖)

• Be The Leader (BTL): 𝑤𝑚 𝑧1, … , 𝑧𝑚−1 = argmin
𝑤

 𝑖=1
𝑚 𝑓(𝑤, 𝑧𝑖)

• If the ERM is 𝛽(𝑚)-stable: 𝑅𝑒𝑔𝐹𝑇𝐿 𝑚 ≤ 𝑅𝑒𝑔𝐵𝑇𝐿 𝑚 +
1

𝑚
 𝑖 𝛽 𝑖 ≤

1

𝑚
 𝑖 𝛽 𝑖

• Follow The Regularized Leader (FTRL):

𝑤𝑚 𝑧1, … , 𝑧𝑚−1 = argmin
𝑤

 𝑖=1
𝑚−1 𝑓(𝑤, 𝑧𝑖) + 𝜆Ψ(𝑤)

• If 𝑓 is 𝐿-Lipschitz and Ψ strongly conv. w.r.t. ‖ ⋅ ‖: 𝑅𝑒𝑔𝐹𝑇𝑅𝐿 𝑚 ≤
𝐿2 sup Ψ(𝑤)

𝑚

≤ 0



Strong Convexity is

Necessary and Sufficient

• Theorem: If a Convex Lipschitz problem (for some ‖ ⋅ ‖ and 

some convex 𝒲) can be online learned with regret 
𝐿2𝐵2

𝑚
, 

then there exists Ψ(𝑤) strongly convex w.r.t. ⋅ s.t.

sup
𝑤∈𝒲

Ψ 𝑤 ≤ 𝑐𝐵2

• More generally: For any problem, Follow The Regularized 

Leader with some Ψ achieves the optimal online regret (up to 

a constant factor), and this can be established via stability



From FTRL to Mirror Descent

• Linearized problem:  𝑓𝑖 𝑤 ≝ 𝑓 𝑤𝑖 , 𝑧𝑖 + 〈𝛻𝑓 𝑤𝑖 , 𝑧𝑖 , 𝑤 − 𝑤𝑖〉

• Main observation: for convex 𝑓, 𝑅𝑒𝑔𝑟𝑒𝑡 𝑜𝑛 𝑓 ≤ (𝑅𝑒𝑔𝑟𝑒𝑡 𝑜𝑛  𝑓)

• Follow the Linearized Regularized Leader (aka Mirror Descent):

𝑤𝑚 = arg min
𝑤

 𝑖=1
𝑚−1〈𝛻𝑓 𝑤𝑖 , 𝑧𝑖 , 𝑤〉 + 𝜆Ψ(𝑤)

= 𝛻Ψ−1 𝛻Ψ 𝑤𝑚−1 −
1

𝜆
𝛻𝑓 𝑤𝑚−1, 𝑧𝑚−1

𝑅𝑒𝑔𝑀𝐷 𝑚 ≤
𝐿2 sup Ψ(𝑤)

𝑚

• Conclusion: Any Convex Lipschitz problem (for any 𝒲 and ‖ ⋅ ‖) 

that is online learnable, is (optimally) learnable with this approach



Strong Convexity as the 

Master Property

Ψ 𝑤 strongly convex w.r.t ‖𝑤‖

arg min  𝐹 𝑤 + 𝜆Ψ(𝑤)
stable

Uniform convergence of

𝑥 → 𝑤, 𝑥 𝑤 ≤ 𝐵}

stat learnability

of 𝑓 𝛻𝑓 ∗ ≤ 𝐿}

stat learnability 

of generalized linear

(including supervised)

FTLRL  /

Online Mirror Descent

online learnability

of 𝑓 𝛻𝑓 ∗ ≤ 𝐿}

RERMERM


