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Outline

Theme: Role of Stability in Learning
Story: Necessary and sufficient condition for learnability

Characterizing (statistical) learnability
— Stablility as the master property

Convex Problems
— Strong convexity as the master property

Stability in online learning
— From Stability to Online Mirror Descent



The General Learning Setting

_ o _ Vapnik95
aka Stochastic Optimization

min F(w) = E;.plf(w,2)]

given an iid sample z4,z,, ...,z,, ~ D

Known objective function f: W x Q - R,
unknown distribution D over Z € Q)

Problem specified by W, Q, f is learnable if there exists a learning
rule w(zy, ..., z,,;) S.t. for every € > 0 and large enough sample size
m(e), for any distribution D:
Ez,..z;m~p F(W)] < inf F(w) +¢€
wew -

CF(wY)




General Learning: Examples

Minimize F(w)=E,[f(w;z)] based on sample z,,z,,...,z,

« Supervised learning:
z=(xy) |
w specifies a perdictor h,: X — Y
f(w; (x,y) ) = loss(h,(x),y)
e.g. linear prediction: f(w; (x,y) ) = loss({w, x),y)

« Unsupervised learning, e.g. k-means clustering:
0=xc Rd
w = (u[1],...,u[K]) € Rk specifies k cluster centers

fC(u[1],....nIK]) 5 x) = ming [ufi]-x|°

« Density estimation:
w specifies probability density p,,(X)
f(w; x) =-log p,(X)

« Optimization in uncertain environment, e.g.:
z = traffic delays on each road segment
w = route chosen (indicator over road segments in route)
f(w;z)=(w,z) = total delay along route



{h, | w e W } has finite fat-shattering dimension

Uniform convergence: SUp ‘F(W) — F(w)

weW

Learnable using ERM:

W = arg min F(w)

Fw)=—) f(w,z) W = arg mMi]n Fw)



Supervised Classification
f(w: (x.y)) = loss(n,(x).y):

{h, | w e W } has finite fat-shattering dimension

n—oo

— 0

Uniform convergence: SUp ‘F(W) — F(w)
weW

Learnable using ERM:

W = arg min F(w)

Learnable (using some rule): F(w) =3 F(w")

[Alon
Ben-David
Cesa-Bianchi
Haussler 93]



Beyond Supervised Learning

e Supervised learning:
f(w, (x,)) = loss(hy, (x),y)
— Combinatorial necessary and sufficient condition of learning
— Uniform convergence necessary and sufficient for learning
— ERM universal (if learnable, can do it with ERM)

« General learning / stochastic optimization:
f(w,z)

2777



Online Learning (Optimization)

Adversary:  f(+;Z,) f(-;z,) f(-;z3)
7 N NS Y

Learner: W1 W2 W3

« Known function f(:,-)

« Unknown sequence z4, z,, ...

* Online learning rule: w;(z4, ..., z;_1)
« Goal: })}; f(w;, z;)

Differences vs stochastic setting:
* Any sequence—not necessatrily iid
* No distinction between “train” and “test”



Online and Stochastic Regret

* Online Regret: for any sequence,

%;ﬂwi(zl 20.2) < inf mZﬂw 2 + eg(m)

\

F(W)
- Statistical Regret: for any distribution D,
IIE‘:Zl,...,Zm~2) [FD (W(Zli "t Zm))] = v|}21£7 FD (W) + E(m)

F(\Y/v*)

 Online-To-Batch:
w(zq, ..., 2y, ) = w; With prob 1/m
E[F(W)] < F(w*) + Reg(m)



Supervised Classification
f(w: (x.y)) = loss(n,(x).y):

{h, | w e W } has finite fat-shattering dimension

n—oo

— 0

Uniform convergence: SUp ‘F(W) — F(w)
weW

Learnable using ERM:

Online W = arg min F(w)
Learnable
[Alon

. ~ n—oo
Learnable (using some rule): F(w) — F(w™) Ben-David
Cesa-Bianchi
Haussler 93]



Convex Lipschitz Problems

W convex bounded subset of Hilbert space (or R%)
Vwewllwllz < B

For each z, f(w, z) convex Lipschitz w.r.t w
Ifw,z) —f(wW",2)| < L-[lw—-w;

E.Q., f(w, (x,y)) = loss({w, x); y), |loss'| <1
x|l < L

B212
m

Online Gradient Descent: Reg(m) <

Stochastic Setting:
— For generalized linear (including supervised): matches ERM rate
— For general Convex Lipschitz Problems?

» Learnable via online-to-batch (SGD)

« Using ERM?



Center of Mass with Missing Data
%W, (I,%Ziel(w[i] — x[i])?

[w eRY |w| <1 } [1 c [d],x[i],i€ [ ||x]| <1 }

Consider P(i € I) = 1/2 independently for all i, x = 0

If d>>2™ (think of d=o0) then with high probability there
exists a coordinate | that is never seen in the sample,
l.e.j &I for alli=1..m

A

Fle;) =0 Fle;) =1/2

sup ‘F(W) - F(W)’ >1/2 e, is an empirical minimizer with

weW . B
No uniform convergence! | | F(&) = 72 far from F(w')=F(0)=0




{ z—f(w;z) | w € W } has finite fat-shattering dimension

setting

general
BuiuIes|
pasiniadng

Uniform convergence: Sup
weW

setting

general
Buiuses|
pasinladng

N
i
=
g
2

Learnable with ERM: F(w)

Online
Learnable

general

setting

Buiuses|
pasinladng

Learnable (using some rule): F(w) =%

=
€>(>



Stochastic Convex Optimization

« Empirical minimization might not be consistent

« Learnable using specific procedural rule
(online-to-batch conversion of online gradient

descent)

o DDV VIVVV?



Strongly Convex Objectives

f(w, z) is A-strongly convex in w Iff:
f(W + w' Z) - fiw,2)+fw',z) A

_ _ 2
5 5 8IIW w'l|5

Equivalent to V2f(w,z) = A

If f(w, z) Is A-convex and L-Lipschitz w.r.t. w
 Online Gradient Descent [Hazan Kalai Kale Agarwal 2006]

Lzlog(m)>

Reg < O
¢g = ( Am

« Empirical Risk Minimization; _
Stochastic Settmez )

E[F(W)] Sé:&m’i; + 0 o



Strong Convexity and Stabillity

» Definition: rule w(z, ... z,) IS f(m)-stable if:
|f(W(zq, .r) Zim—1), Zm) — f(W (24, ..., Zim), Z) | < B(M)

« Symmetric W is f-stable = E[F (W,,,_1)] < E[F ()] + B
For ERM: E[F(W)| < E[F(w*)] = F(w™)

e fIs A-strongly convex and L-Lipschitz =
LZ

|f(w(211 "'lZm—l)'Zm) — f(W(Zl, ...,Zm),Zm)l < IB — E

 Conclusion:

E[F(w)] < B(m)



Empirical Minimization Consistent,

but Is there Uniform Convergence?
f (w&xz)) < Zie Wl - x[iD? + Allw|2

[w eRY |w| <1 } [1 c [d],x[i],i€ [ ||x]| <1 }

Consider P(i € I) = 1/2 independently for all i, x = 0
For j that is never seen in the sample:
_ 1
F(tej) = At? F(te;) = S+ AL?

No uniform convergence: Sup. ’F(W) - F(W)‘ > 1/2



{ z—f(w;z) | w € W } has finite fat-shattering dimension

bulules|
pasiniadng

~ n—oo
Uniform convergence: Sup F(w) - F(w) > 0
weW
not even
| local

Buiuses|
pasinladng

n—oo

Empirical minimizer is consistent: F'(W)

Online |
Learnable

Solvable (using some algorithm):  F'(w) ——

Buluses|
pasinladng

n—oo

=
€>(>



Back to Weak Convexity

f(w, z) L-Lipschitz (and convex), ||w||, < B
« Use Regqgularized ERM:
W, = arg min F(w) + = ||W||2

wEW

2

e Setting A =

B2m’

E[F(W)] < F(w*) +0

m

« Key: strongly convex regularizer ensures stability



The Role of Reqgularization

e Structure Risk Minimization view:

— Adding reqgularization term effectively constrains domain
to lower complexity domain W,. = {w | ||w|| < r}

— Learning guarantees (e.g. for SVMs, LASSO) are
actually for empirical minimization inside W.,., and are
based on uniform convergence in W,..

* |n our case:
— No uniform convergence in W,., for any r>0
— No uniform convergence even of regularized loss

— Cannot solve stochastic optimization problem by
restricting to W,., for any r.

— What regularization buys is stability



Stability Characterizes Learnability

Theorem: Learnable with (symmetric) ERM w iff vD
[E[|f(W(Zl, ---:Zm—l):zm) o f(w(zlr ---:Zm)izm)l] < lg(m)

Finite fat-shat
dlmensmn

For some B(m) —» 0

Theorem: Learnable iff 3 symetric i s.t. VD: Unlform

E[F (W) — F(W)] < e(m)

A
\ 4

e wis stable:

|E[f (W(zq, o) Zm—1), Zm) — [ (W (24, ..’ Zi), Zy) ]| < B (M) Stable ERM

For some e(m) - 0, f(m) - 0

Buluuea| pasiniadns

Learnable Wlth

* wisan “almost ERM™: [ Convergence
[ ERM

I

|2 NG S N

3 Stable
[ AERM H Learnable




Strong Convexity and Stabillity

 For any norm ||w||:

- Y(w) = 0is strongly convex w.r.t. [|[w]], i.e.

w+w' Yw) +¥Pw' 1
v (M) = T L

- f(w, z) is L-Lipschitz w.r.t. ||w]||:
Ifw,z) = f(wW",2)| < L-|w—-wl

s . 2
= W, = argmin F(w) + %LP(W) IS %-Stable
w

« With A = /L2/($(w*)m):
) JLZLP(W*)
F(wy < F(w™) +
m




Convex Lipschitz Problems

W convex bounded subset of normed space (R% or Banach space)

For each z, f(w, z) convex Lipschitz w.rt w
[fw,z) = fW",2)| <L-|lw—-wll

E.Q., f(w, (x,y)) = loss({w, x); y), |loss'| < 1
x|l <L

To learn: need W (w) strongly convex w.r.t. || - ||

L2B?2

F(wy) < F(w*) + B? = sup ¥(w)

wew

Is this universal?
Can all Lipschitz problems (for all || - || and W) be learned this way?



Stability in Online Learning

Reminder: rule w(z4, ... z,,) IS B(m)-stable if
|f(W(zq, ..o) Zm—1), Zm) — fW (24, ..., Zm), Zy) | < B(M)

Follow The Leader (FTL): Wy, (24, ..., Zm—1) = argmin Y1 f(w, z;)
w

Be The Leader (BTL): wy,(zq, ..., Zm—1) = argminX./2, f(w, z;)
w

If the ERM is f(m)-stable: Regpy;(m) < Reggr (m) + %Ziﬁ(i) < %Ziﬁ(i)

Follow The Regularized Leader (FTRL):
Wi (24, oo, Zm—q1) = argmin Y271 f(w, z) + AP (W)
w

L% sup Y(w)
m

If f is L-Lipschitz and W strongly conv. w.r.t. || - ||: Regprr,(m) < \/



Strong Convexity Is
Necessary and Sufficient

Theorem: If a Convex Lipschitz problem (for some || - || and
2p2

some convex W) can be online learned with regret 7: :

then there exists W(w) strongly convex w.r.t. ||-|| s.t.

sup Y(w) < cB?

wew

More generally: For any problem, Follow The Regularized
Leader with some W achieves the optimal online regret (up to
a constant factor), and this can be established via stability



From FTRL to Mirror Descent

e Linearized problem: f;(w) & f(w;,z;) + (Vf(w;, z;), w — w;)
 Main observation: for convex f, (Regret on f) < (Regret on f)
* Follow the Linearized Regularized Leader (aka Mirror Descent):

w,y, = argmin Y NVf(w;, z),w) + AP (w)
w

— VLP_l (VLP(Wm_l) — % Vf(Wm—lJZm—l))

L? sup P (w)
m

Regyp(m) < \/

« Conclusion: Any Convex Lipschitz problem (for any W and || - ||)
that is online learnable, is (optimally) learnable with this approach



Strong Convexity as the
Master Property

WY (w) strongly convex w.r.t [|w||

/\

Uniform convergence of
{x - (w,x) | ||lw|l < B} stable

ERM

|

.

arg min F(w) + AW (w)

RERM

=

FTLRL /

Online Mirror Descent

|

stat learnability

of generalized linear j[&——
(including supervised)

|

stat learnability

of Lf IVl <L}

online learnability

of Lf IVl <L}

/




